
020.PUB

Page 1 of 39

Project Reference Number TP/3/PIT/6/I/15927

Project Title Mobile Network Optimisation Through Advanced
Simulation

Project Acronym MONOTAS

Project Partners Multiple Access Communications Limited

Vodafone Group Services Limited

Nortel Networks UK Limited

Report Title Survey of Optimisation Techniques

Report Reference Number 020.PUB.2

Report Date 8 March 2006

Editor(s) Peter Myerscough-Jackopson (MAC Ltd)

Author(s) Peter Myerscough-Jackopson (MAC Ltd)

Reviewer(s) Peter Gould (MAC Ltd), Damian Bevan (Nortel)

Abstract This report reviews the areas of optimisation and control
theory and examines the different techniques available and
their potential for use in the optimisation of mobile radio
networks.

Keyword(s) Network Optimisation, Optimisation, Control, Adaptive
Control.

Confidentiality Public

020.PUB

Page 2 of 39

Document History

Date Version Comment Editor

15 February 2006 1.0 Issued for internal
review.

Peter Myerscough,
MAC Ltd

8 March 2006 1.1 Updated due to
comments from
Damian Bevan
(Nortel) and Stefan
Thiel (Vodafone).

Peter Myerscough-
Jackopson, MAC
Ltd

020.PUB

Page 3 of 39

Executive Summary
Project Monotas is a collaborative research project, part funded by the UK
Department of Trade and Industry, to examine the use of advanced simulation and
other computer models in the control and optimisation of large-scale mobile radio
networks, and in particular 3G networks. In this report we review the areas of
optimisation and control theory as potential ‘tools’ to be used in Project Monotas.
Optimisation is concerned with the selection of optimal settings for a system, given a
system function that can be used to evaluate the performance of a particular setting.
Control theory deals with modelling the relationship between a system and its
controller to produce the best system behaviour.
The optimisation techniques presented in this report cover the areas of continuous and
discrete valued problems, consider the effects of stochastic environments and take
their inspiration from biology, physics, neurology, statistics and other areas. The
literature within optimisation considers the different approaches and methods and
acknowledges that no single technique will be able to perform perfectly on all
problems. Further to this it is argued that each technique will, on average, perform the
same on the range of all problems, and so it is important to consider how the
technique aligns itself to known information about the problem being considered.
In the control theory section the ideas covered include open- and closed-loop control
as well as non-adaptive and adaptive control. Further to this, the adaptive control
section considers the issues of exploring new settings verses using old settings that
have proven capabilities for enhancing the system. Adaptive control also enables
strategies that are developed within a simulation environment, once deployed, to
develop further in the real system environment. This may be a useful feature of
adaptive control that may show not only improvements in the final performance of
the network, but if analysed after installation may reveal information about the
network’s true behaviour.
Our concluding remarks consider that the selection of an algorithm from those
reviewed will involve evaluating each technique against each problem Project
Monotas encounters. It is also noted that limits may need to be placed upon the
operation of any of the techniques to prevent failure or system degradation that may
be seen as unacceptable. Finally, measures for the evaluation of a technique should
also be decided upon so that the integration of any developed technique into a system
can be monitored.
This report should therefore help enable Project Monotas to explore algorithms that
will provide enhanced network performance that cannot currently be achieved.

020.PUB

Page 4 of 39

Table of Contents

LIST OF ABBREVIATIONS ..6

1. INTRODUCTION ..7

2. NETWORK OPTIMISATION STRATEGIES...8

3. OPTIMISATION TECHNIQUES ...12

3.1. Random Search 13

3.2. Relaxation Methods or Optimisation Frameworks 14
3.2.1. Sample Path 14

3.2.2. Ordinal Optimisation 14

3.2.3. Perturbation Analysis 15

3.2.4. Branch and Bound 15

3.2.5. Metamodels 15

3.2.6. Clique Detection 16

3.3. Using ‘Optimal’ Settings in the Real World 16

3.4. Continuous Value Optimisation Methods 16
3.4.1. Gradient Based Methods 17

3.4.2. Non-Gradient Based Methods 18

3.5. Discrete Value Optimisation Methods 20
3.5.1. Small number of input values 20

3.5.2. Large number of input values 21

4. CONTROL THEORY TECHNIQUES..27

4.1. Non-adaptive Control 27
4.1.1. Open-loop Control 27

4.1.2. Proportional-Integral-Derivative Control 27

4.1.3. Model Predictive Control 28

4.2. Expert Systems 28

4.3. Adaptive Control 29
4.3.1. Exploitation vs Exploration 29

4.3.2. Rates of Change: the System vs the Controller 29

020.PUB

Page 5 of 39

4.3.3. Adaptive Model-based Control vs Adaptive Control 30

4.3.4. Iterative Learning Control 30

4.3.5. Genetic Programming 30

4.3.6. Artificial Neural Networks 30

4.3.7. Markovian Decision Processing 32

4.3.8. Training and ‘Learning’ methods 32

4.3.9. Neural Swarming 34

4.3.10. NeuroEvolution of Augmenting Topologies 35

5. SUMMARY AND CONCLUSIONS ...36

020.PUB

Page 6 of 39

List of Abbreviations

3G Third Generation (Mobile Network)

ANN Artificial Neural Network

MDP Markov Decision Process

MONOTAS Mobile Network Optimisation Through Advanced Simulation

NEAT NeuroEvolution of Augmenting Topologies

PID Proportional-Integral-Differential, a type of controller

020.PUB

Page 7 of 39

1. Introduction
The aim of Project Monotas is to develop new schemes for optimising mobile
networks, with a particular focus on using advanced simulation methods and
computing techniques. The partners within the consortium have a current interest in
the newly deployed and developing 3G networks and so, although techniques and
ideas developed during the course of the project may be applicable to a range of
different technologies, they will be developed and evaluated with particular reference
to 3G networks.

The project is currently in the early stages of discovery and problem definition, and
the literature review presented in this document represents a part of this discovery
process. Other parallel activities include examining the current processes that are used
in network optimisation, understanding the cost of modelling different aspects of the
network accurately and considering which aspects of the 3G network may benefit
most from optimisation. This means that although we have considered a range of
different optimisation strategies and methods in this report, the exact problem to
which they may be successfully applied is as yet undefined. Therefore, we are not
able to perform a detailed evaluation of the different options with respect to our
requirements at this stage, and so this process will be performed later in the project.
Our aim has been to examine the potential ‘tool kit’ of algorithms and approaches that
could be used within Project Monotas, without descending into too much detail
relating to the manner in which the techniques may actually be used at this stage. In
Section 2 we consider different ways in which the techniques examined in this report
could be used in the optimisation of a mobile network. This is followed in Section 3
by a discussion of the various optimisation techniques available. We examine the
potential advantages and limitations of each technique and consider how they may be
used within Project Monotas. In Section 4 we consider different control theory ideas,
focusing first on non-adaptive control then moving on to consider adaptive control.
Control techniques have the potential to facilitate a more effective approach to real-
time network optimisation than those ideas presented in Section 3. In Section 4 we
also consider different approaches that can be used to ‘train’ or adapt controllers to
match a particular problem. Finally, in Section 5 we present our conclusions.

020.PUB

Page 8 of 39

2. Network Optimisation Strategies
In this section we examine five possible strategies for optimising a mobile network.
Some of them utilise simulation in the final operation of the strategy, others may need
advanced simulation to develop and set their parameters (but may not involve
simulation within the ultimate solution) and yet others are techniques that operate as
approximations to the real network.

To apply network optimisation, various network parameters must be made available
for adjustment. Conversely, to detect changes in the network in response to these
alterations, network statistics or real-time metrics must also be exposed. This view of
the network is presented in Figure 1.

Figure 1 also suggests that a simulator could replace the real network. This will have
to be the case during the course of Project Monotas so that different techniques and
ideas can be applied to the simulated network without costly results should they fail.
The concept of “Optimisation Algorithms” can be expanded upon, although it could
simply refer to any of the techniques presented later in the document. Alternative
structures for approaching network optimisation are also going to be considered and
some current candidates are shown in Figures 2 to 5.

Optimisation
Algorithms

Real Network
(Simulator)

Network
Parameters

Network
Statistics

Figure 1 A simple diagram describing the general approach to optimising a real
or simulated network.

Figure 2 shows that a network simulator could be used in a final solution to enable
network parameters to be tested before application to the real network, ie, to try out
‘what if’ scenarios. Currently this is a common approach in automated network
planning, but the links that enable the change in network parameters are human and
the parameters are usually physical quantities that it may only be possible to adjust
manually, eg, site placement, antenna downtilt. This project is aiming to consider
network parameters that can be altered rapidly (ie, without manual intervention), since
this would facilitate closed-loop network optimisation. The problems with the
approach of Figure 2 are associated with simulating the network at a sufficient speed
and accuracy to predict network statistics in sufficient quantity and quality. This in
turn limits the ability of an optimisation algorithm to find a better set of network
parameters in a reasonable timescale. It may therefore be necessary to produce
multiple network simulators with differing degrees of speed and accuracy to solve
different problems and support different optimisation algorithms. Increasing the speed
at which the network parameters can be tuned with respect to changes in the network
statistics may have to be approached in a fundamentally different manner. Figure 3 is
a further proposal that uses a real-time controller with an optimisation algorithm able
to change the manner in which the controller operates as the network changes.

020.PUB

Page 9 of 39

Optimisation
Algorithms

Network
Simulator

Proposed
Parameter

Settings

Predicted
Network
Statistics

Real Network
(Simulator)

Network
Parameters

Network
Statistics

Figure 2 The use of a network simulator to enable proposed settings to be verified
to test for improvements and validity.

In Figure 3, the use of a real-time controller will enable the network parameters to be
altered in rapid response to changes in network statistics. An off-line optimisation
algorithm can also be used to tune the controller to better match network behaviour.
The use of a real-time controller also brings in the field of control theory, which may
allow estimates of the relationship between the network and the controller,
particularly with regards to stability. This may mean that any technique developed
using this paradigm can provide reassurances about the chances of failure, but they
will be dependent upon the assumptions made about the network.

Optimisation
Algorithms

Real-Time
Controller

Real Network
(Simulator)

Network
Parameters

Network
Statistics

Controller’s
performance

statistics

Updated
Controller
Settings

Figure 3 Network optimisation can be managed rapidly with a real-time
controller, whilst the controller’s performance can be monitored and controlled by
an offline optimisation algorithm.

A further alternative to the arrangement shown in Figure 3 is the use of an adaptive
controller, as presented in Figure 4. An adaptive controller would allow on-line
optimisation to occur whilst the network is in operation. This type of controller can
start with poor results as the internal parameters are often randomly initialised and it
can be ‘trained’ to control the system via some feedback mechanism. This will mean
that such an adaptive real-time controller will need to first be trained on a network
simulator. The advantages of this technique could involve the ability of the controller
to continue to adapt once it has been transferred to the real network and to do so
continuously. This could provide a greater level of performance as the network
controller and parameters are always being updated. The amount of network data that
can directly influence this type of controller could also be orders of magnitude greater
than any other technique. This will be because the controller can be adapted to
network statistics immediately and so there is no requirement for storage or
transmitting all the data across the network.

020.PUB

Page 10 of 39

Adaptive
Real-Time
Controller

Real Network
(Simulator)

Network
Parameters

Network
Statistics

Figure 4 An adaptive real-time controller could be used to rapidly apply changes
to the network, but also to rapidly ‘learn’ and adapt to the network whilst on-line.

The final method presented in this section is shown in Figure 5 where a model of the
system is constructed that can be both adapted to the network’s current state and can
also be used to either predict future states of the network given certain input
parameters or ‘solved’ to show the optimal parameter settings given the current status
of the system. The latter approach could use mathematical techniques such as sets of
simultaneous equations to solve the model’s behaviour, if the model is constructed in
an appropriate manner. Simplifications of the system will reduce its ability to predict
far into the future, but may be reliable enough to be useful if the model is adapted as
the system changes. This adaptation allows the model to be much simpler than the
system and maintain a good estimate of the system’s current behaviour.

Optimisation
Algorithms

Adaptive
Network
Model

Real Network
(Simulator)

Network
Parameters

Network
Statistics

Proposed
Network

Parameters ‘Solve’ the
model

Predicted
Network
Statistics

Figure 5 Adaptive Model-based optimisation algorithms rely on constructing a
model of the network that can allow predictive behaviour to be evaluated or can
be solved to give the best current action.

These five possible methods for optimising the network are a useful start to
considering the most appropriate approaches to different network problems.

They do not consider the differences in scale that will exist between problems or
between local or network wide optimisation strategies. Optimising the whole network
in a single operation allows for the effects of each change in the network to be
resolved and balanced before application. Alternatively, applying the optimisation
process at a local level where only a subset of the network is examined simplifies the
problem and allows the optimisation task to be effectively distributed throughout the
network. This division and simplification may come at a cost to overall system
stability as optimisations applied within neighbouring locales could cause
destabilising behaviour of some system attributes, or degradation as race conditions or
deadlock occurs due to controllers operating with insufficient information or
authority.

Considerations also need to be given to the type of changes the network undergoes.
This is particularly important when considering that a change in conditions could
change the optimal settings for the network. Therefore any optimisation technique

020.PUB

Page 11 of 39

chosen must be able to cope with the different changes in the network, both gradual
and stepwise in manner. Change may also be found in the transfer of any technique
from a theoretical form, such as simulation, to the real network. The management of
this change in the system that the technique is attempting to optimise is also an
important consideration especially nearer the end of this project.

Final considerations must also be given to the rates at which the network may
generate meaningful statistics and possible limitations on rates of change that network
parameters may undergo. Both of these will affect how rapidly the network may be
adapted. Slow generation of meaningful statistics may limit the changes applied to the
network’s parameters to prevent instability. It is also highly likely that statistics or
metrics that the system outputs will be generated at different rates, possibly allowing
some parameters to undergo more rapid adaptation than others, or for more minor
variations to be applied rapidly and larger variations, which depend on more slowly
generated statistics, being applied less rapidly.

020.PUB

Page 12 of 39

3. Optimisation Techniques
Optimisation in the context of this report is the selection of input parameters for a
system that, when applied to the system, gives the best response or output from the
system over some period of time. In the case of this report the expected system is
some as yet undefined aspect of the 3G mobile phone network, with the best response
also an undefined quantity. To discuss the various approaches further we introduce
some nomenclature, as follows.

)(Xff()
)f(Xf()

)f(X
Xk
Xk
Xk

k

k

k

k

k

k

ˆ ion toapproximatan
 ofgradient the

function system the
setth theprecede that parameters ofset the

setth thefollow that parameters ofset the
parameters ofset th

1

1

∇

−

+

Each optimisation method is expected to produce parameter settings, Xk, by some
process such that the system function, f(Xk), is set to an optimum, either a maximum
or minimum dependent upon how the function is formulated. This system function
may be a direct measurement of the part of the system that is undergoing optimisation
or it may be a statistic or indirectly related measure. It may also be expected to come
from the real network, if the optimisation process is applying parameter changes
directly, or from a model of some description.

Commonly within the optimisation literature the concept of a problem’s surface is
used to relate parameter settings to the system function, f(Xk). This idea is shown in
some of the figures used to illustrate the progression of certain algorithms later in this
section. The surface in these plots describes the system function, but it is important to
realise that any algorithm attempting to find the minimum or maximum of the
function does not have the full knowledge of the system function’s surface. An
example is given of two surfaces in Figure 6. The five crosses signify where the
function has been sampled, and are in the same positions for Figure 6(a) and Figure
6(b), but the underlying surfaces are different. An optimisation process that is just
measuring the surface height at the five positions shown cannot detect this difference.
It is only by exhaustively measuring the surface at each point in a function that the
true surface structure can be found. However, this can be a time-consuming process,
and in many situations it can be impractical due to the number of parameters (ie, the
number of dimensions associated with the surface) and the variation possible in those
parameters. We therefore consider optimisation algorithms that do not rely on
exhaustively evaluating the system function.

020.PUB

Page 13 of 39

(a) (b)
Figure 6 An example of two system function surfaces, five samples (crosses)
from each function give matching results with different true surface shapes.

The selection of an optimisation algorithm is a difficult task, and in some cases it is
simpler to state that a technique would not be useful because it cannot deal with
known constraints. Alternatively some mathematical techniques may be designed to
optimise problems that can be approximated by quadratic equations, but it may be that
a particular system is more complex. There also exist optimisation techniques such as
genetic programming whose full behaviour is not understood by the research
community even now, and yet have been successfully applied to a wide range of
problems. This can mean that selecting an optimisation technique suitable for solving
a problem may be a ‘hit and miss’ process. Furthermore, a paper by Wolpert and
Macready [1] suggests that even if an optimisation technique is shown to produce
‘good’ results up to a certain point, there is no guarantee that the same technique will
be able to continue to optimise further based on its past performance. This paper also
argues that over the set of all problems, each optimisation technique will perform on
average the same as any other, but it is likely that there will be variation in
performance on an individual problem basis. They also consider that problems where
the performance for a particular optimisation technique is ‘good’ often reflect an
alignment in structure between the problem and the optimisation technique. They
therefore advise that any optimisation technique will benefit from including as much
domain knowledge as possible to tailor the technique based on this knowledge.

Other considerations are the realistic constraints of time and resources when applying
an optimisation technique to a problem. Techniques may or may not provide
guarantees to reach the global optimum and even if a technique is guaranteed to find
the global optimum, it may not be possible for it to achieve this within practical
timescales. A more desirable property may be the arrival at a ‘good’ local optimum
that satisfies some measure of ‘closeness’ to the global optimum within a reasonable
timeframe.

In the remainder of this section we consider a wide range of optimisation techniques
that have different limitations and may hopefully also align to different problems
uncovered during Project Monotas.

3.1. Random Search
Randomly searching the problem domain for an optimal solution to a problem is one
of the simplest methods used for optimising a set of parameters. It can be treated as a
baseline algorithm. In circumstances where there is insufficient knowledge of the
problem domain to infer any sort of structure it may perform comparably or better
than any other technique that places constraints upon how new parameters are
selected to be tested. The random element of the search can be altered if the

020.PUB

Page 14 of 39

distributions from which the random parameters are selected from are not uniform.
These distributions can be altered to contain domain specific knowledge. Any further
alterations lead to a random search becoming more similar to the optimisation
techniques presented in the following sections.

3.2. Relaxation Methods or Optimisation Frameworks
Optimisation typically considers problems that are hard to solve; they may be
formalised as Non-deterministic Polynomial time (NP)-hard or NP-complete
problems, or they may be associated with a simulation or stochastic process. In
considering these problems, methods for changing the problem to a simplified and
more solvable one have been proposed. This process is called relaxation, and can
involve removing some of the constraints to input variables or changing some of the
assumptions a simulation makes. This should enable quicker computation and the
following ideas are approaches published in the optimisation literature that consider
how to relax a problem to solve it more effectively.

3.2.1. Sample Path
Sample path optimisation [2, 3, 4, 5] is designed to provide a framework for selecting
optimal parameters when using a simulation that behaves stochastically. The
technique relies on being able to re-run a stochastic simulation with the same random
effects occurring at the same time. This then allows a set of parameter settings to be
developed that are optimal for a single set of random events within the simulator. This
process is then repeated, tuning the same parameter settings to a new set of random
effects. The chosen settings should become more general as a greater number of sets
of random effects are used to ‘train’ or select them. The combination of optimal
settings for specific sets of random events and generalisation because of the number
of sets used, should give good or optimal performance for new sets of random events.

3.2.2. Ordinal Optimisation
Ordinal optimisation [6, 7] can be viewed as an approach to optimisation as well as a
separate technique. Ordinal optimisation reconsiders the question of searching for an
optimal solution given a finite time and more realistically attempts to find a ‘good’
solution. This more realistic approach suggests a framework for optimising problems
that are difficult to optimise given constraints that do not allow an algorithm to iterate
through many different parameters. The ordinal optimisation [8, 9] approach relies on
sampling theory that states that the probability of selecting a ‘good’ solution, ie, a
solution in the top x%, is unaffected by the size of the problem domain the parameters
are taken from, but is related to the number of different parameters, viewed as
samples, taken from the problem domain. This will mean that given a target
percentile, eg, top 5%, it is possible to estimate the likelihood of one of the selected
parameter sets being a member of the top 5%. The added concept of optimising the
parameters in an ordinal manner also means that instead of calculating the degree of
improvement a new set of parameters makes (ie, how much better is Xk+1 than Xk?),
the question is simply: is Xk+1 better than Xk? This change in approach should allow
for calculations and simulations to take a less detailed or costly approach and also
cause ordinal optimisation to converge on a ‘good’ solution more rapidly than
cardinal optimisation techniques [10,11]. This allows for an initially large number of
parameters options to be chosen and then all tested using a crude simulation to rank
each parameter set. This ranking then defines which parameter sets to apply to a more

020.PUB

Page 15 of 39

detailed simulator. This process of applying an approximation to the system function
to rank different parameter sets can be repeated, enabling a large number of different
parameters to be investigated, and yet not wasting undue processing time on
evaluating poorly performing parameter sets. Additional work on ordinal optimisation
considers ordinal optimisation with constraints [12] and vector ordinal optimisation
[13].

3.2.3. Perturbation Analysis
Gradient estimation within a multidimensional problem space requires many
evaluations of the system function if the gradient estimate is generated from finite
differences. This process is very dependent upon the cost of evaluating the system
function, and also upon the number of dimensions in the problem space. Techniques
have therefore been developed that attempt to calculate the gradient via other means,
and perturbation analysis is one such method [14,15]. To apply perturbation analysis
it must be possible to alter the system function, eg, if the system function is a
simulator the source code must be available. The algorithm requires that the
calculations at each stage calculate not only the values for the current settings, but
also for settings that are slightly different or perturbed. This is a different process to
applying multiple separate settings because it places a restriction on the perturbations
to reduce the amount of additional calculation. This constraint requires any
perturbation to be so small that it does not affect the order of any events within the
system. This can limit the usefulness of the technique for systems that are excessively
sensitive. It also complicates the system function calculation, but in a high
dimensional problem should provide quicker estimates of the gradient than finite
difference methods. Further developments and research into perturbation analysis in
stochastic approximation can be found in Reference [16].

3.2.4. Branch and Bound
Branch and bound optimisation strategies typically rely on mathematical methods to
estimate lower bounds and realisable bounds to a problem. Lower bounds describe the
best results any settings can achieve on the current problem. This enables the process
to assess if it has found the global optimum, or if it is sufficiently close. Realisable
bounds or results are measured from applying settings to the system. Branch and
bound then uses these two methods to take a problem and measure the theoretically
best case given by the lower bound and the best solution that has been found given by
the realisable bound. If these two bounds are the same then the optimal values have
been found and the process may end. If not, then the problem is separated into sub-
problems and both bounds are recalculated. Lower bounds in sub-problems that are
greater than the current best realisable bound will mean that the selected sub-problem
cannot contain any better results. This prevents additional calculation of the realisable
bound.

3.2.5. Metamodels
A metamodel can be defined as a simpler model of a more complex model. In
simulation optimisation it can be used to approximate the simulation process to filter
the parameters applied to the actual simulation. This is particularly useful when the
simulation process can take a large amount of processing. A metamodel is a coarse
representation of the simulation process used to reduce the number of times the
simulation must be run to find an optimum. It can be constructed from modelling the
relationship between input and output parameters of the simulation, treating the

020.PUB

Page 16 of 39

simulation as a black box. It may also monitor the expected error between its results
and the simulation’s results, giving a confidence measure alongside a setting's
suitability. April et al [17] suggest the use of metamodels with particular reference to
the type of techniques presented in Section 3.5.2.

Alternatively metamodels can be constructed using a model that is easily solved. For
example it may be known that the system is non-linear and a linear metamodel could
be adapted to match the current behaviour of the network. This could be extended to
non-linear modelling techniques that may be solvable mathematically and can also
approximate to a system’s behaviour. Both these use the metamodel to produce
solutions that can be applied to a more advanced simulation or model or to the real
system.

3.2.6. Clique Detection
Clique detection [18,19], although not actually an optimisation technique, is a useful
strategy for aiding in the optimisation of some graph problems. In network
optimisation, it can commonly be the relationships between many base stations or
other network points that makes sharing some common resource more difficult.
Clique detection allows areas within the network that have a high degree of
“connectedness” to be extracted and these areas can be called clusters or cliques. This
can enable difficult sub-sections of the network to be optimised before optimising the
system as a whole.

3.3. Using ‘Optimal’ Settings in the Real World
In the course of optimising network parameters, some aspect of network modelling
must take place. This may be simple equations or complex simulations, but each
model cannot fully represent a real network. This therefore ties us to being able to
make optimisations on models and these ties may mean that optimal parameters for
the model are not as optimal on a real network. It is also important to consider that the
error between the model of the network and the network itself may be significant
enough that the error could grow, ie, there is an instability or cumulative effect that is
not modelled and therefore the optimal parameters are unable to balance these effects.
Applying noise to aspects of the model to include a degree of uncertainty in the model
may enable the transfer of ‘optimal’ parameters between a model and a real system.
This approach has been considered in Reference [20] and there was found to be a
distinct difference in the ability of ‘optimal’ parameters to be transferred to the real
system and this was dependent upon where the noise was applied in the control loop.
Further discussions of the transfer of robotic controllers from simulation to the real
world show a high degree of sensitivity to the degree of noise added to a simulation
[21].

3.4. Continuous Value Optimisation Methods
The following techniques and methods are designed to be applicable to continuous
valued parameters. This does not mean that they cannot be applied to discrete valued
problems, but they will need to be altered to cope with this added constraint. It may
also be impossible to define a gradient for some problems so the techniques in
Section 3.4.1, which are gradient-based methods, may need to be applied on sub-
problems that do not include these limitations. Section 3.4.2 describes methods that
do not require gradient information to work.

020.PUB

Page 17 of 39

3.4.1. Gradient Based Methods
3.4.1.1.Stochastic Approximation
Stochastic approximation is an optimisation technique that attempts to provide
optimum parameter settings even given results that suffer from noise. Mathematically
it has been shown to ‘weakly’ converge on the system optimum after an infinite
number of iterations. The actual process of stochastic optimisation is governed by the
following equation with its accompanying constraints.

0)(Lim,
)(1

=ℜ∈
∇+=

∞→

+

kkk

kkkk

aa
XfaXX

 (1)

where the reduction of ak, reduces the effect of the gradient of the system function as
the number of iterations increases. Unlike some of the other techniques, stochastic
approximation does not compare the new parameters, Xk+1, with the old, Xk, and select
the best with respect to f(X). Instead it requires the process to run sufficiently long
that the mean gradient directs the optimisation process to the system minimum. This
also allows local minima to be escaped from as the estimated gradient is expected to
vary if the simulator contains a stochastic element. Alternatively the gradient
estimates may be perturbed by a random variable to simulate this behaviour and
enable the technique to escape local minima. Although stochastic approximation does
provide a simple process to search for or calculate the optimum, it does require the
gradient to be calculated at each iteration. This can be an expensive measure to
calculate since to calculate it in n-dimensional space requires n+1 different
measurements to calculate a simple gradient measure. More accurate difference
methods require even more measurements, but this process must be repeated after
each alteration of the parameters, Xk. This problem has led to a number of techniques
that attempt to calculate the gradient more efficiently, eg, perturbation analysis
presented in Section 3.2.3.

3.4.1.2.Gradient Descent Method
The gradient descent method is a very simple method for optimising a problem. The
technique randomly selects its initial set of parameters. It then compares the ‘fitness’
of the current parameter set with that of neighbouring parameter sets. The parameter
set with best fitness is then chosen as the new parameter set. This process is then
repeated with the current parameter set being compared to its neighbours repeatedly
until either a certain number of iterations are performed, or the current parameter set
is better than any of its neighbours, in which case an optimum is found. Gradient
descent does not avoid local minima, but it can be used within more advanced
techniques as a sub-technique. The distance between the current parameter set and its
neighbours is controlled by the gradient of the system function for the current
parameter set. This is reflected in Figure 7 where two start points are selected, one on
the left and the other on the right. The right half of the system function has a steeper
gradient so the selected neighbours are a greater distance from the current parameter
setting. This allows the gradient descent process to reach the minima more rapidly in
the right hand half of Figure 7.

020.PUB

Page 18 of 39

Figure 7 A comparison of the effects of the gradient on the convergence of the
gradient descent method. The two starting points on the left and right are both
able to find the minimum, but with a different number of iterations.

3.4.2. Non-Gradient Based Methods
3.4.2.1.Nelder-Mead Simplex
The Nelder-Mead Simplex algorithm [22] performs its optimisation process whilst
maintaining d+1 solutions, where d is the number of dimensions. This would allow a
simplex to be constructed from the d+1 solutions. The algorithm is initialised with
parameters X0, X1, X2�.Xd+1, which are randomly distributed at the extremes of
feasible solutions to a problem. Each X is then evaluated using the system function,
f(X). The parameter set with the worst cost is then removed and replaced by a new set
of parameters. This new parameter set is constrained to be on the line that lies
perpendicular to a surface that can be formed by all the other parameter sets in the
problem space and passes through the discarded point. After the point is added to the
simplex, the next worst point is removed and the simplex is redefined again. This
iterative replacement of parameter sets causes the simplex to reduce in size and
converge on a minimum as a whole [23]. The stopping condition for the optimisation
process could be that a number of iterations of the algorithm have been performed or
the improvements or size of the simplex has reached a certain threshold.

In Figure 8 we provide a simple example of the Nelder-Mead Simplex algorithm in
operation. A simplex is formed in a two-dimensional problem space using three
vertices. The figure illustrates how the simplex shrinks as the vertices of the simplex
are replaced. In this example the initial parameters are represented as the outer corners
(the blue triangle). The first iteration then considers the top right hand vertex to have
the worst performance. This parameter setting is then replaced with an improved
setting found along the line running perpendicular to the ‘surface’ formed by the other
two vertices and the rejected parameter set (the parameter sets now form the green
triangle). The second iteration then considers the left most parameter setting to give
the worst performance and so this is replaced with another new vertex, again with the
new vertex being constrained to lie on the line perpendicular to the ‘surface’ formed
by the other vertices and the rejected parameter setting (the parameter sets now form
the red triangle). The simplex has thus reduced in size, and should be closing around
the optimum of the system.

020.PUB

Page 19 of 39

Figure 8 A simplex in 2D problem space is shrunk by replacing vertices to form a
smaller simplex centring upon a minimum. This is repeated, shrinking the simplex
further.

3.4.2.2.Hill Climber
The hill climber [24] algorithm is very similar to the gradient descent algorithm, with
the most notable exception that it does not use gradient information to guide its
optimisation approach. It is also formulated to find the maximum of the function, f(X),
but this can be changed to searching for the minimum by returning any result
multiplied by minus one, ie, -f(X). The hill climber algorithm is started with a random
parameter set, X0. The result of applying this parameter set is then compared with its
neighbour(s). The neighbours are selected by altering parameter values in X0 to
produce new parameter values, Xn. The hill climber can then either select the best
neighbour after evaluating all of its neighbours, or it can select the first neighbour that
offers an improvement. In either case the process is then repeated with new
neighbours being generated and better neighbours replacing the current best solution.
The process stops when none of the neighbours are an improvement on the current
parameter set. This can occur when the hill climber has found the global or a local
maximum as there are no guarantees of finding the global maximum in hill climbing.

Figure 9 shows an example problem surface and three randomly selected starting
parameters for X0. In Position 1 the hill climber finds a local optimum by gradually
comparing its current best solution to its neighbours and selecting those further up the
slope. This behaviour is repeated for Points 2 and 3, but Point 3 finds the global
maximum. Whether or not Point 2 results in the global maximum being found is
dependent upon Point 2’s position within the ‘valley’. As a result of the hill climber
being unable to escape local maxima (eg, such as the iteration starting from Point 1),
the hill climber should be restarted with a new random X0. This enables more of the
parameter space to be searched for optimal solutions. Improvements on the basic hill
climbing strategy have been proposed in Reference [25].

020.PUB

Page 20 of 39

2 3
1

Figure 9 An example problem surface in black with three randomly selected
starting parameters, X0. Each parameter is shown to find the global or local
optima.

3.5. Discrete Value Optimisation Methods
The following sections describe a range of optimisation methods that consider
discrete valued problems. Section 3.5.1 considers two methods that are designed to
optimally select parameter settings when there are a very limited number of possible
variations. More general approaches to optimisation of discrete valued problems with
many possible parameter settings are considered in Section 3.5.2.

3.5.1. Small number of input values
Many of the techniques presented in this report attempt to select the optimal
parameter settings given a large number of different options. This section particularly
focuses on a different aspect to optimisation that attempts to optimally select a set of
parameter settings given the system that is needing to be optimised is stochastic in
nature. This means that the optimal parameters may need to be resilient to different
random effects and that any given simulation may give better results than the
‘optimal’ setting for a less than optimal setting.

3.5.1.1.Rank and Select
Rank and selection [26] takes a cardinal approach to optimally selecting some
parameter set from a small number of options. The process of rank and selection
evaluates all the parameter sets using the stochastic system function and collects
results for each set. This is then repeated a number of times with the mean and
variance of the results for each parameter set being collated. The results are then
ranked according to some combination of the mean and variance before either the top
setting is selected or the top x settings are selected and the process is repeated to
obtain even more accurate results for each of the settings before a final selection is
made.

3.5.1.2.Multiple Comparison Procedures
Comparison procedures [27] differ to rank and selection by comparing the different
settings in an ordinal manner. Instead of calculating the mean and variance of each
technique according to the system function, each of the parameter settings are applied
to an approximation of the stochastic system function. This approximation should
enable direct comparison between different settings on an instance of the system
undergoing similar stochastic effects. The results for the different settings are then
compared, with each setting winning or losing in comparison to all the other settings.

020.PUB

Page 21 of 39

The results for each setting and each approximation of the system function are then
combined to give the parameter settings that perform the best. This best can then be
used as the proposed optimum, or the top x settings can be selected again and the
process repeated.

3.5.2. Large number of input values
Problems that involve a large number of different input values will need some
systematic method of searching for optimal values. This section considers many
different algorithms and ideas for optimising a set of parameters with ranges of values
that mean an exhaustive search is impractical in the available time.

3.5.2.1.Tabu search
Tabu search [28, 29, 30, 31] builds upon the idea of inverted hill climber1
optimisation, but also includes the ability for the optimisation process to temporarily
go ‘up hill’, whilst at the same time attempting to avoid returning to the same point in
the problem space. The particular aspect that gives tabu search its name is that as the
technique examines the parameter sets that neighbour the current best solution, some
of the neighbours are considered “tabu”2 and are prevented from being selected as the
next ‘best’ point in the parameter space. This tabu status may be caused by the point
having been previously encountered, or having been in a direction that has commonly
or uncommonly been taken in the search for the optimum. This limits the number of
possible options for a tabu search algorithm to take. The rules for generating the tabu
points at each new position can contain problem specific knowledge, but will
typically involve some aspect of the history of the search so far. Each iteration of tabu
search considers the neighbours of Xk and selects the neighbour with the lowest f(X).
This allows the search process to escape local minima, if the tabu list can contain
information on the location of previous optima. Although points are given tabu status,
they may still be evaluated with the system function. This enables an aspiration
function to select tabu points that are significantly better than non-tabu points, and
override the tabu list given that the point gives a significant improvement.

Additionally tabu search can also include the notion of a second fitness function. This
second function can be used to escape local minima, assuming the alternative function
relaxes system constraints. These behaviours, matched with the ‘memory’ aspects of
tabu search, attempt to enable local minima to be escaped.

In Figure 10 we show a possible path that could be taken in a tabu search. In common
with many methods the initial settings are selected at random and the tabu search
proceeds to find the local minimum by considering its neighbours. On reaching the
local minimum it continues to the right as neighbours to the left are present in the tabu
list having been recently evaluated. This allows the tabu search method to escape the
local minimum, before (at the third cross) it is able to descend into a better minimum.

1 Here the term ‘inverted hill climber’ is used to signify that the algorithm is formulated to descend into
the valley, rather than climb the hill.
2 “tabu” is an alternative spelling of “taboo”, and is used here to match the literature that describes the
“tabu-search” method.

020.PUB

Page 22 of 39

 1

Figure 10 An example of a tabu search method finding a minimum for a simple
problem surface.

3.5.2.2.Simulated Annealing
Simulated annealing [32] is an optimisation approach that takes an analogy from the
physical process of annealing materials to achieve good internal structure by
managing the cooling process. Annealing attempts to prevent structures forming in a
material that are not at a minimal energy state and in simulated annealing this is
equivalent to avoiding local minima. In annealing the temperature is lowered, and
during simulated annealing the allowable variations in system ‘energy’ are reduced
over time. This energy must be defined by the system being optimised and should
reduce as a more optimal set of parameters is found. During simulated annealing the
optimised parameters are selected dependent on the change in system energy. New
parameters that lower the system energy (ie, provide a better solution) are kept.
Parameters that produce a higher level of energy within the system (ie, provide a
worse solution) are also kept with a probability, p , as defined by the following
equation:

T
E

ep
δ−

= (2)

where E∂ is the positive change in energy, and T is the ‘temperature’ of the system
at its current stage of annealing. This means there is a lower probability of accepting
changes in parameters that cause greater increases in system energy (ie, provide worse
solutions) as the temperature, T, is lowered. This behaviour of simulated annealing
allows for the optimisation process to avoid local minima to a certain extent by
accepting some changes that give worse results. The initial starting ‘temperature’ of
the system, when to lower the temperature and by how much are all considered part of
the annealing schedule. These aspects can be difficult to define, as can a useful
measure of the energy in the system to use to indicate any improvements.

Figure 11 shows the progression of a simulated annealing technique towards a
minimum. The initial parameter settings, Point 1, are randomly selected. Randomising
some aspect of the current parameters generates a new parameter set. Thus from Point
1, the technique compares Point 2. This is an improvement and so is accepted,
similarly Point 3 and 4 are both improvements. Point 5 is however a worse option to
that of Point 4, and its selection relies on the temperature of the system. A high
temperature gives a greater likelihood of acceptance and a low temperature will be
more likely to reject this degradation. Assuming Point 5 is accepted the process would
continue on to Points 6 and 7. It is then unlikely that the parameter setting of Xk will

020.PUB

Page 23 of 39

‘escape’ the minimum as the temperature is lowered, because the probability of the
system having sufficient energy to jump out of the valley will become very small.

 1
2

34

5

6

7

Figure 11 An example of the simulated annealing optimisation method finding a
minimum for a simple problem surface.

3.5.2.3.Evolutionary Programming
Evolutionary Programming [33] is one of three algorithms presented in this report that
are based upon the biological theory of evolution. Evolutionary programming is
distinct from the following methods in its use of selection and mutation in defining
new settings for the system. In evolutionary programming the parameters, Xk, are
encoded in a ‘genome’. This genome is then subjected to a process of mutation where
each part of the genome may be altered causing a ‘mutation’ in the genome. The
genome may be a simple vector, but may include transformations of various
parameters to better fit the processes of mutation. One such transform is the
conversion of integers from a standard encoding scheme to a gray code. This is a
useful conversion when the effects of mutation are considered on the binary form of
an integer. A single bit ‘mutation’ or toggling for a binary encoded number can give a
very large mutation if the random process toggles one of the most significant bits.
Gray coding integer values however can limit the numerical distance between the
original and the mutated values. This can allow the parameters to be altered in a less
volatile way. To add to the concept of mutation, evolutionary programming also
maintains a ‘population’ or set of different parameter settings rather than a single
current best. This population is added to by taking a current member and applying
mutation. Typically this may be repeated for each member of the population. A
process of selection is then used to reduce the population size, maintaining it at a
predefined size. Selection is commonly a probabilistic process that favours genomes
that have better performance for the system, but does not guarantee that unfit
members of the population will be ‘culled’. Through selection, a member can remain
in the population through multiple generations. Evolutionary programming differs
from genetic algorithms in its ability to operate upon parameters that may contain real
numbers.

3.5.2.4.Evolutionary Strategies
Evolutionary strategies [34, 35, 36, 37] are very similar to evolutionary programming
techniques. An evolutionary strategy can use the processes of selection, mutation and
recombination (a process similar to the cross over mechanism found in genetic
algorithms). It is designed to be able to optimise real valued problems. The genome of

020.PUB

Page 24 of 39

an evolutionary strategy contains not only the parameter settings, but also the settings
that control the mutation. Variations applied to each parameter are zero mean
Gaussian distributed, allowing larger variations less frequently, but with the
aforementioned settings the mean and variation of the distribution can be controlled.
The processes of mutation and selection are similar to those in evolutionary
programming, but the process of recombination is different. Recombination uses
multiple ‘parent’ genomes to produce a new genome for selection. This recombination
can for example take the first part of one genome and the second part of another to
make a new genome to be added to the population before selection. There are many
different forms of recombination and the process can also be tailored to fit the
specifics of the problem undergoing optimisation.

3.5.2.5.Genetic Algorithms
Genetic Algorithms [38, 39, 40] consider the parameters of a problem to be a vector
representing the ‘genes’ of the solution. A number of possible solutions are then
generated to form an initial population of solutions; each member of the population
has their own genes forming a genome. This population then undergoes a series of
transformations to form a new population. These transformations can involve
selection, mutation, and cross over or some other form of combining. After generation
each genome is applied to the system and its ‘fitness’ or response from the system
function is measured. Each member of the population is typically used to create the
new population in proportion to its ‘fitness’. The selection process selects members of
the population that are to be involved in producing the next generation of solutions.
This removes genomes that are considered unfit, typically in a probabilistic manner,
thus favouring the ‘fittest’ members. However, it also allows poorly performing
members a chance to contribute to the next generation. After selection, the process of
cross over can be applied which takes genes from two or more members of the
population and combines different parts of the parent genes to form a new genome or
solution. Mutation can then also be applied altering the genes (or parameters). Both of
these processes allow for the parameter space to be investigated further. Implementing
a genetic algorithm does not require that selection, mutation and cross over are all
performed. An example of a genetic algorithm being used to optimise a set of
parameters is shown in Figure 12.

In Figure 12 the population is initialised with 3 random genomes, 1a, 1b, and 1c. These
genomes are then evaluated and 3 new members of the population are created through
mutation and crossover to form members 2ab, 2ac and 2bc. The total population is then
put through a process of selection where it would be expected that the second
generation members would be more likely to be selected as they have better fitness in
this minimisation problem. Member 3 may then be a likely descendant of this new
population, but it would depend on exactly how the mutation and cross over
operations worked on the underlying genome.

020.PUB

Page 25 of 39

1a
1c

2ac
2ab

1b

2bc

3

Figure 12 A possible history of a genetic algorithm searching the parameter
space. The first generation, 1a, 1b, and 1c are mutated and combined to form the
second generation, 2ab, 2ac and 2bc.

Genetic algorithms are still under research to understand exactly how each aspect of
selection, mutation and cross over affects the optimisation process. In general, without
mutation a population’s diversity may degenerate as variation in genes are likely to be
lost without any method for regaining variation. With mutation, a perfect solution is
always degraded, and an imperfect population can reach an equilibrium point where it
cannot improve due to the level of mutation occurring in each generation. Crossover
can increase the rate at which good solutions are found. One issue with genetic
algorithms is the common requirement to be able to control the solution using a
genome (set of genes), which is typically binary in nature.

3.5.2.6.Nested Partition
The nested partition algorithm [41] for optimisation attempts to solve optimisation
problems by dividing the parameter space into partitions. The initial steps of the
algorithm consider the whole of the parameter space and partition it into a number of
partitions. Each of these partitions is then sampled from, and the results from each
sample taken from the parameter partition are combined to give a representative value
for that partition. An example of a search space having undergone this process is
shown in Figure 13a. The partition with the best representative value is then divided
into more partitions whilst all the other partitions are combined to form an outer
partition. This is shown in Figure 13b. The process is then repeated with these new
partitions. It is then expected that the algorithm will slowly select a smaller and
smaller partition that has increasingly favourable results. If, however, at any stage the
outer partition contains a better representative value then the algorithm selects the
outer partition as the new partition and this is divided again into new partitions and
the process continues. This option to select the outer partition enables nested partition
optimisation to escape local minimum to some degree. To make sure the
representative value is a useful measure, the number of samples taken from all the
partitions is dependent upon the size of each individual partition. The algorithm can
stop when the selected partition contains a single parameter setting or the partition is
below some other size-based threshold. Alternative stopping conditions such as after a
certain number of iterations or when a solution is close enough to a theoretical
optimum may also be used.

020.PUB

Page 26 of 39

(a) First Iteration (b) Second Iteration
Figure 13 Applying a nested partition technique to an irregular shaped search
space.

020.PUB

Page 27 of 39

4. Control Theory Techniques
Although the main task of this report is to evaluate current optimisation approaches,
in practice, the use of these techniques with a simulator may not reach the ‘real-time’
operation criteria that may be needed to optimise certain aspects of the 3G network.
Control theory could provide methods for controlling the network in ‘real-time’ and if
the controllers were able to be adapted then this may provide a method for optimising
the ‘real-time’ behaviour of the network. There are also sections of the control theory
community that consider adapting the controllers whilst they are operational. This
chapter therefore considers static or non-adaptive control theory and also adaptive
control theory.

4.1. Non-adaptive Control
Control theory has been applied in many industrial settings where a process or plant
must be controlled to give a certain output. Examples are found in managing chemical
reactions in a chemical plant, the movement of a conveyor belt system in a factory or
the power control between a mobile handset and a base station in the 3G mobile
network. This control can either be open- or closed-loop in nature, where a closed-
loop system takes the output of the process or plant and uses it to make future control
decisions. In both cases the plant is modelled by a transfer function that takes the
output of the controller and attempts to reflect the output of the plant. This modelling
of the plant allows an open-loop system to predict the response of the plant to given
input settings. It can also enable a feedback loop of the controller and the plant to be
analysed to ensure ‘good’ behavioural properties of the overall system. These ‘good’
properties will include some measure of system stability. Stability in control can mean
that for a given bounded input, a system produces a bounded output. This criterion
relies on the state of the system being controllable and observable, ie, it must be
possible to set the inputs of the plant such that a system state is reachable, and it must
also be possible to observe the state of the system to avoid ‘bad’ system states. If
either of these criteria is not satisfied, then stability may not be guaranteed.

4.1.1. Open-loop Control
Open-loop control is a type of control strategy that contains no feedback loop. It can
be used when the inputs to a system can sufficiently control a system. Turning on a
light would be an open-loop system, but if the light were to have blown no feedback
is present to inform the controller that the behaviour has failed to meet its aims. We
do not expect open-loop control to contribute significantly to Project Monotas.

4.1.2. Proportional-Integral-Derivative Control
The Proportional-Integral-Derivative controller or PID controller is a commonly used
feedback controller. Its three separate parts provide different abilities to control a
system. If we consider the system function f(X), and the target or reference value for
our system then the difference is the current error. The proportional aspect of the
controller will change the parameters, Xk, proportionate to this error. The integral
controller changes with respect to past error between the reference level and the
system output. The differential controller changes Xk with respect to the current rate
of change of the system output. Each of these different controlling aspects adds the
ability to select the most desirable control behaviour. Figure 14 shows this

020.PUB

Page 28 of 39

graphically, highlighting the aspects that the proportional, integral and derivative parts
of the controller use to influence the degree of their affect on the new parameters.

Derivative Integral

Proportional Reference
Level

System
output

tnow time

Figure 14 Given a reference signal, the proportional, integral and derivative
aspects of a PID controller act on different aspects of the current output.

In designing a PID controller the system itself must also be modelled. This allows the
overall system behaviour to be designed to match requirements of stability, speed of
response and whether or not the system output may over shoot the target value.

If the modelling of the system is flawed it may cause instability and deviant
performance. However, there are methods to make a controller more robust against
certain inaccurate estimates of the system.

4.1.3. Model Predictive Control
Model predictive controllers (MPC) [42, 43] attempt to control the error that a system
will produce given its past, present and predicted future responses. This can allow a
model predictive controller to cause the current error to increase given that the
expected error experienced over the predicted future will be lower. This type of
controller has been used successfully in many industrial applications. It models a
system in a similar way to a PID controller, but has the added advantage of predicting
future responses. This can allow constraints on input and output parameters to be
fulfilled by predicting the future behaviour of the system and so avoiding current
behaviour that may cause these constraints to be violated in the future.

4.2. Expert Systems
Expert systems are rule-based programs that can take a set of predefined rules and
apply them through inference to diagnose a problem or generate a response to a
situation or system state. The rules in an expert system are a series of ‘if-then’
statements that are typically defined by an outside expert. There is a possibility that
the rules could be adapted and altered by some external optimisation scheme, but the
impact of alterations to rules can be hidden, as there are no predefined connections
between rules that the method of inference would use. Expert systems can be directly
improved by an expert, and new knowledge can be added to the system to enable it to
respond to new stimuli and conditions as well as to give different responses. If an
expert system was adapted by an optimisation process, with the choice of rules to
include within an expert system controller being optimised, it may enable a controller
to be developed that would be able to give an explanation for its behaviour. This may
prove useful in developing an understanding of any system being controlled.
However, because the outputs of the system are generated from the inference of

020.PUB

Page 29 of 39

different rules, this may produce a system that performs stably over all tested cases
and may behave errantly for situations that may be different by a fraction.

4.3. Adaptive Control
Adaptive control in its forms presented in the next sections attempts to use a system’s
history to improve the current control strategies. This can be either through direct
alteration of a controller’s own parameters, or through those of a model. The study of
adaptive control and learning systems has developed from the fields of psychology,
statistics, computer science and neuroscience. Because of this, some of the ideas are
biologically inspired, some have a strong mathematical basis and others have been
developed iteratively as the power of computers has grown. Initially we consider the
trade off between exploring new settings for a system and exploiting known settings
in Section 4.3.1. The next two sections then discuss the need for any adaptation of the
controller to be as fast as the underlying system, and the difference in approach
between adaptively modelling the system being controlled or adaptively controlling
the system directly.

4.3.1. Exploitation vs Exploration
Before employing any adaptive control strategy it is important to consider the trade-
off between exploitation and exploration of any adaptive control strategy. If the
primary consideration of a control strategy is exploitation, then all actions performed
by the system will be targeted at placing the system into an optimal configuration
given the current knowledge of the system. This optimal configuration may not be
optimal in any global sense, but relies on knowledge captured from either the designer
or from previous exploration. A controller that only considers exploitation may
become fixed in its ability to make control decisions. Exploration however attempts to
select parameters that may provide future benefits, but that contain an aspect of risk in
the form of unknown effects. During any exploration of system settings the
performance of the system is unlikely to be the best, given the current knowledge of
the system. It should, however, allow new control behaviours to be discovered and
possibly better controller behaviour to be discovered. In a commercial system such as
a 3G network, system degradation due to exploration would also need to be quantified
or limited. Examples are also given in the literature that suggest that even if a system
seeks to only take the current ‘optimal’ action based on past history, ie, to act
exploitatively, that the system may explore due to other factors, such as stochastic
effects within the system or other complex effects. These examples are found in
developing game playing software for backgammon [44, 45, 46] and checkers [47]
where only exploitative methods are used, but the controllers ‘learn’ or adapt. It could
be hypothesised that in the case of backgammon exploration is forced by the random
elements of the dice used to govern the movement of pieces, and in checkers by the
controller playing against itself.

4.3.2. Rates of Change: the System vs the Controller
Adaptive controllers must be able to change faster than the system they are
controlling. If a controller adapts slower than the system it is controlling, it will not be
able to control the system optimally and the system as a whole will suffer from lag.
This constraint will limit the accuracy and processing time that will be available to
any proposed method to maintain the controller’s ability to adapt in line with the
system.

020.PUB

Page 30 of 39

4.3.3. Adaptive Model-based Control vs Adaptive Control
To provide control for a system, knowledge of the system must be contained in the
controller that either matches or mirrors the system. One approach to controlling a
system is for the adaptive controller to model the system in a form that the controller
can extract information from or use more readily to draw conclusions. These
conclusions could predict results for a series of actions the controller may perform
with an expected reward or performance benefit. This type of behaviour allows a
controller to test or hypothesise about its choice of actions and solve the optimisation
problem with knowledge of the system. An alternative is to use a simpler, ‘solvable’
model of the system, ie, if the system is non-linear, the model may be linear. This
simplification allows for control strategies to be produced for a linear view of the
system. This approach is appropriate if the model can be updated often enough such
that the current linear approximation matches the current mode of the non-linear
system.

Adaptive control without a model directly adapts the controller. Previously in
Section 3 it was stated that optimisation algorithms solved problems more effectively
when their structures were aligned. The effective adaptation of the controller must
therefore be the process of aligning the controller’s structure to the system. This
alignment is the same as encoding knowledge of the system into the controller, but in
a ‘solved’ format. This second method must therefore combine a method for adapting
and a method for solving that is separated in the model-based approaches.

4.3.4. Iterative Learning Control
Iterative learning control [48], unlike other control strategies presented in this report,
is designed specifically for repetitive tasks. The process of adaptive control or
controller optimisation is triggered after each iteration of the repetitive task.

This type of control scheme may only be useful if certain tasks can be identified as
repetitive and can be triggered from the network. This could allow layers of
controllers where an iterative learning controller would control sub-tasks that could be
triggered by a more ‘senior’ controller.

4.3.5. Genetic Programming
Genetic programming [49] is a very similar paradigm to genetic algorithms. The
difference lies in the building blocks that the genome controls. A genetic algorithm’s
genome is the parameters that are directly fed into a system; a genetic programming’s
genome contains the functions that control the system. For genetic programming this
allows the designer to place problem specific knowledge into these initial functions.
This should simplify the problem that the genetically inspired algorithm must solve,
whilst at the same time providing assumptions and constraints as to how to solve a
problem where innovative and more efficient methods may exist, but are hard to
construct from the set of functions that was used to initialise the algorithm.

4.3.6. Artificial Neural Networks
The area of artificial neural networks [50, 51] (ANNs) has been developed from
biologically inspired models of connected neurons. Their use within Project Monotas
could be as controllers that are optimised either before deployment, and/or whilst
deployed. An ANN consists of a network of simple processing units that take a set of
inputs, combine them in a simple manner, condition the result and then output the

020.PUB

Page 31 of 39

result. The output can either connect to another neuron or be a controller output used
for setting the parameters. Example combining functions are a weighted sum or a
logical AND. The conditioning function can be a simple multiplication of the sum, a
thresholding operation or a more complex function such as a sigmoid. Differences
between ANNs with the same number of neurons can be due to different combining
functions, different conditioning functions or different connections between neurons.
Variations between ANNs may also be encoded in the parameters that control each of
these aspects.

 Inputs

Output Conditioning
Function

COMBINE(Inputs)

Figure 15 An example structure of a simple artificial neuron in an artificial neural
network.

After defining the internal structure of the neurons used in the ANN, they are
connected together to form a network. These connections will include connections
from inputs, eg, network statistics, and connections to outputs, eg, network
parameters, as well as inter-neuron connections joining neurons together. Further to
this, ANNs are also divided into two classes dependent upon whether there are cycles
in the connections of the network. Networks without cycles can be called feed-
forward networks, and those with cycles can be called recurrent networks. Both are
shown in Figure 16 with the feedforward network in (a) and the recurrent network in
(b). There also exist a number of other names for the two different types of ANN as
researchers from computer science, neurology, psychology and physics have all been
involved in the field of ANNs. Recurrent networks give the network a form of
memory, but are harder to train directly.

(a) (b)
Figure 16 An example structure of a feedfoward and a recurrent artificial neural
network in (a) and (b), respectively.

There are a number of different methods for optimising or training an ANN.
Optimisation techniques such as genetic algorithms can be used to optimise the
internal parameters of an ANN, but do not necessarily take advantage of the structure
of the ANN being optimised. More direct approaches to optimising or training an
ANN are techniques such as back-propagation. Larger, more highly connected ANNs
can be more difficult to train because the parameters are coupled. The structure of an

020.PUB

Page 32 of 39

ANN is also a consideration since it is often predefined before the ‘learning’ process
begins. Trade offs exist when deciding the number and structure of the neurons in an
ANN. With too many neurons, the network will be more difficult to train, with too
few the network won’t be able to meet the challenge. This trade off is considered in
the technique presented in Section 4.3.10, which considers varying the structure of the
ANN by adding new neurons and connections as well as managing the evolution of
each neuron’s internal parameters.

4.3.7. Markovian Decision Processing
Modelling a system as a Markov decision process [52] (MDP) allows predictions to
be made as to the optimal action for the current state. MDPs are processes whose
current best action is only influenced by the current state. Not all past state transitions
influence the decisions of the current state. To optimise for a modelled MDP-like
system, each set of available actions will carry a reward associated with choosing it. If
the optimisation process is just considering the best current action to take, then the
model can simply be used to look up the current best action. After each action, the
reward can be updated with the results from repeating that action. It is also possible to
use the MDP to select the best action if the rewards from the next N states are
considered. To calculate the reward for taking action A and the best following action
we can use the following equation,

 ∑+= max|12 nAnAA RpRR α (3)

where
1AR is the reward for taking action A in the current state and

2AR is the reward if
the following state is considered. Anp | is the probability of arriving in the nth state
given action A is taken in the current state. maxnR is the best reward that is available in
state n. α is used to weight the future rewards. This equation can then be used to
calculate the reward for each action in the current state with a ‘horizon’ of 1, ie, the
process is looking into the future 1 step. This will allow an action that performs badly
to be taken if it is likely to make the system enter states with highly rewarding
actions. This process of looking ahead can be repeated to consider the best current
action if two future actions can be considered. The reward from each future action can
be summed evenly (1=α), or future rewards can be reduced depending on how far
ahead they are (1<α). This allows earlier rewards to be favoured. The number of
iterations of looking ahead, or the ‘horizon’, can be set to different lengths. That is, in
the example the horizon was just one, but it could be extended further by iteration.
This becomes exponentially more expensive as the horizon is extended. One of the
key aspects to this approach is that to be able to control such a process it is important
that the current state of the system is fully observable. MDPs are also closely
associated with stochastic learning automata [53] that are able to control MDPs.

4.3.8. Training and ‘Learning’ methods
4.3.8.1.Reinforcement Learning
Reinforcement learning is a concept associated with adapting a controller, such as a
neural network, to perform a task via the use of rewards and punishments. It does not
specify how the controller that is being adapted must perform the task, but purely
provides feedback on how well the controller is performing. The feedback in
performance for a system can be instantaneous, but it can also be delayed. This can
cause a problem when attempting to evaluate the actions a controller is taking. This

020.PUB

Page 33 of 39

builds upon the ideas of Markov decision processes, where each state of the system
under control is observable and then a choice in actions is possible. These actions will
then generate some form of reward or punishment. Transitions from state to state of
the system typically are probabilistically defined, implying that an action in one state
will not control the next state of the system. The rewards generated may also not
necessarily be constant for a single action in the same state.

There are two general approaches to applying this concept to adapting systems. The
simplest is to use an optimisation algorithm to search for an optimal set of parameters
that can be applied to the controller. Alternative methods also exist specifically for
ANNs, namely, back-propagation and Q-learning. Both enable a neural network to
converge on an optimum in a timescale that is dependent on the complexity of the
network.

This process of reinforcement will fail if the performance characteristics are not well
represented in the reinforcement measure. For example, if during training an element
such as coverage is not included, or not weighted highly enough in the calculation of
fitness, then the system will reduce coverage to maintain other ‘more important’
elements. Care must therefore be taken in formulating the reinforcement function.

Reinforcement learning has been used in elevator control [54]. This application has
interest because the elevators were each controlled by a separate ANN controller
without direct communication. The controllers were then all subject to the same
reinforcement-learning signal generated from the performance of all the ANNs as a
group. This signal was ‘noisy’ due to the interactions between the different controllers
as they all changed at the same time. This meant that elevator controllers with
different properties could be developed to serve the different requirements or
behaviours of the overall system. The training of the elevators used probabilistic
models of passenger requests and destinations that may have parallels to the problem
of call admission in mobile networks, especially if probabilistic models of user call
behaviour are also available.

4.3.8.2.Supervised Learning
Supervised learning [55, 56] supplies the adaptive controller with a set of example
inputs and outputs that should be representative of the task the controller is required to
perform. The adaptive controller is then altered via some scheme to produce the
desired outputs given the test inputs. It is then hoped that the controller will have
‘learnt’ how to control the system in a general manner. Problems arise in using this
type of learning if the training data is not sufficiently broad to cover the functionality
of the system requiring control. Other difficulties may be in defining the desired
response to a complex system given a known output of the system. Thus the
generation of data to train the controller can be a difficult task.

4.3.8.3.Unsupervised Learning
Unsupervised learning [55, 56] is used to detect patterns in data, and is not
immediately suitable for training an adaptive controller. Unlike a supervised learning
system, an unsupervised learning system is only given input data without any labels
describing what the data represents, or if their immediate response is ‘right’. The
unsupervised system’s aim is to label the data according to structures found within the
data itself. This process could evaluate a set of data with each sample of an N-
dimensional size to be generated from m different independent variables. This allows
for the data to be simplified to m dimensions, which could allow for easier

020.PUB

Page 34 of 39

interpretation by a user and simpler computation by any following process.
References for using unsupervised learning to present to users are found in [57, 58] or
for input into automation schemes in [59]. Within Project Monotas, unsupervised
learning could be useful to analyse user behaviour, or to separate out different
conditions experienced by network elements. This could provide further insight into
user and network behaviour that may not ordinarily be found. It may also highlight
interdependencies within the network’s statistics.

4.3.9. Neural Swarming
Neural swarming [60] is a combination of ideas present in non-adaptive control and
neural networks. The starting point for applying neural swarming to a problem is a
neural network trained to perform the task of a PID controller. This PID controller
should be chosen such that it can effectively control the current state of the system.
This ANN, trained as a PID controller, is then duplicated with each internal parameter
of the neurons being varied by a small percentage. This produces ANNs that model
behaviour close to the original PID controller. The different ANNs are then placed in
control of the system for short amounts of time, after which their performance is
‘rated’. In between each neural network taking control of the system its parameters
are updated. An example scheme for updating the parameters is described in the
following equation,

)()(1

1

nsbnnbnn

nnn

WWrandWWrandVV
VWW

−⋅⋅+−⋅⋅+=
+=

−

+

βα
 (4)

where Wn represents the current values for the ANN, Vn represents the current rate of
change of those values, nominally called the velocity of the swarm member, α and β
are constants that control the rate of change within the system and rand is a random
number between 0 and 1. The variables Wnb and Wsb represent the neural network
parameter values that produced the best rating for this swarm member and the current
best ever values from all swarm members, respectively. Updating the swarm
member’s parameters using the overall swarm’s best values should keep each member
centred about the current optimal values. The use of the velocity should also allow the
swarm members to investigate different settings around this optimum. This process of
continually exploring controller settings around the current optimum allows the PID
controller to change its approximation to the system as the system changes.

Using a population of ANN models of different PID controllers can allow a complex
non-linear system function to be controlled with linear controllers. The example in
Figure 17 shows a more complex system function, which at different points of its
operation can be controlled by the three different controllers PID1, PID2, and PID3.
The neural swarm technique allows different controllers to be tested around the
current optimal controller. For example, if the system were to be operating such that
the controller represented by PID2 was the optimal controller, when controllers PID1
and PID3 are tested on the system they would receive lower ratings from the system.
If, however the mode of the system changed then one of the non-optimal controllers
may become the optimal controller, and the internal settings of each of the swarm
members would move towards this new optimum. Due to the method of updating the
member’s internal variables the members do not converge, but swarm around the
optimum. This may allow for slightly less than optimal behaviour, but allows the
controllers to adapt and centre themselves as a swarm around the system’s current
optimal value.

020.PUB

Page 35 of 39

Complex System
function

PID1

PID2

PID3

Approximations of
the System function

Figure 17 Using 3 different control strategies PID1, PID2, and PID3 at different
times will allow simpler systems to be used to approximate the more complex
system function.

4.3.10. NeuroEvolution of Augmenting Topologies
NeuroEvolution of Augmenting Topologies [61] (NEAT) is similar to the developing
neural networks in neural swarming. Both maintain a population of neural networks
whose weights are changed to manage a scheme of iterative improvements and also a
form of adaptation in line with changes in the system they are controlling. The
difference between the two ideas lies in the ability for the NEAT method to add to the
neural network’s topology, ie, to add complexity via new connections and new
neurons. The initial size of a neural network deployed within the NEAT scheme is
small, allowing for the network to be adapted to the system more rapidly. This
adaptation is managed by the use of a genetic algorithm that represents the
connections between the different neurons in its genome. The different members of
the population are then placed in control of the system for a short time and then rated.
Replacement members are then generated from fitter members of the population.
Members are then discarded if their overall fitness is the lowest. This fitness rating is
balanced with the number of neural networks NEAT has created with similar
structure. ANNs with newly added links between neurons, or new neurons are
temporarily prevented from being discarded. This allows the new structure to mature
before it is allowed to be removed from the population.

020.PUB

Page 36 of 39

5. Summary and Conclusions
This report has considered a wide range of methods that have been developed in order
that computers can be used to solve difficult problems. The techniques have been
grouped into the areas of network optimisation strategies, optimisation techniques and
control theory. Network optimisation strategies presented in Section 2 suggested five
approaches that could be useful for optimisation of networks within Project Monotas.
Section 3 reviewed optimisation techniques that can be applied to difficult problems.
This firstly considered frameworks to simplify the system being optimised, and then
presented different techniques that can be used to find optimal settings for a system.
In Section 4 the use of control theory techniques to directly influence the network
were considered. These techniques should enable faster response times to changes in
the system or mobile network, which would hopefully provide a greater level of
performance than more static settings. This differs from optimisation by trying to
define the rules or behaviours that should be used to respond to a system, rather than
trying to define the system’s inputs given the system’s outputs. These rules form
closed-loop control over a system and can be adapted or remain fixed.

The application of each of these techniques to problems encountered in Project
Monotas is likely to be somewhat experimental. The beginning of Section 3
highlighted the difficulty in finding a good optimisation technique for any given
problem, and considered it to be a ‘hit and miss’ process. There are also concerns
about the number of iterations each algorithm may take when finding good settings
for the network, especially if the optimisation process is required to update the
network’s parameters in a fixed time step. Selecting a good adaptive control scheme is
also subject to the same ‘hit and miss’ process, where it is unknown whether a
controller may adapt well or not given a particular system to control. Other difficulties
with adaptive and non-adaptive types of control are associated with defining the
models of the system the controller is meant to control. These models, used by some
control theories, enable controllers to predict the stability of the overall system, which
in turn constrains and defines their own outputs. Inaccuracies in the estimation of a
system model, which to a certain extent may be countered by robust methods, could
cause the resulting controllers to behave in an unstable manner.

Finally, whether an optimisation scheme or a real-time controller of some description
is selected for solving problems within Project Monotas, some aspect of configuration
of the network will be ceded to an automatic process. To prevent failure, these
automations will need limits placed upon them, whose appropriate settings will also
need to be decided. It will also be important that the performance criteria of the
schemes be set so that they may be evaluated. It is unlikely that any scheme selected
from this report will produce perfect performance. Therefore, understanding the
failure modes, the variations in performance and the possible gains will enable the
process of adopting a chosen scheme to be monitored. The potential benefits to
computing ‘optimal’ or better settings for the network could be significant, and will
hopefully allow an improvement to network conditions that could not normally be
achieved. The use of real-time controllers within the network environment also allows
optimisations that could not currently be performed by an engineer, and may help the
network to tailor itself to the immediate demands imposed upon it.

020.PUB

Page 37 of 39

References
1 Wolpert, D.H., and Macready, W.G. “No Free Lunch Theorems for Optimization”, IEEE

Transactions on Evolutionary Computation, Vol. 1, pp. 67-82, 1997.
2 Plambeck, E. L., Fu, B. R., Robinson, S., and Suri, R. “Throughput optimization in tandem

production lines via nonsmooth programming”, Proceedings of the 1993 Summer Computer
Simulation Conference, pp.70–75, San Diego, CA, 1993.

3 Plambeck, E. L., Fu, B. R., Robinson, S., and Suri, R. “Sample-path optimization of convex
stochastic performance functions”, Mathematical Programming, Vol. 75, pp.137–176, 1996.

4 Robinson, S.M. ”Analysis of sample-path optimization”, Mathematics of Operations Research,
Vol. 21, pp.513–528, 1996.

5 Ferris, M.C., Munson, T.S., and Sinapiromsaran, K. “A Practical Approach to Sample-Path
Simulation”, Proceedings of the 2000 Winter Simulation Conference, pp.795-804, 2000.

6 Ho, Y.C., Sreenivas, R., Vakili, P. "Ordinal Optimization of Discrete Event Dynamic Systems",
Journal of Discrete Event Dynamic Systems 2(2), pp 61-88, 1992.

7 Ho, Y.C. "Heuristics, Rules of Thumb, and the 80/20 Proposition", IEEE Trans. on Automatic
Control, Vol. 39, No.5, 1025-1027, May 1994.

8 Lau, T.W.E. and Ho, Y.C. "Universal Alignment Probabilities and Subset Selection for Ordinal
Optimization", Journal of Optimisation Theory and Applications, Vol.39, No.3, pp 455-490, June
1997.

9 Lin, S.Y., and Ho, Y.C. "Universal Alignment Probability Revisited", Journal of Optimization
Theory and Applications, Vol.113, No.2, pp.399-407, May 2002.

10 Ho, Y.C. "A New Paradigm for Stochastic Optimization and Parallel Simulation", Proceedings of
1993 DES Workshop in IMA/U.Minn Lecture Notes Series, Springer-Verlag, (1994)

11 Dai, L., and Chen, C.-H. "Rates of convergence of ordinal comparison for dependent discrete event
dynamic systems", Journal of Optimization Theory and Applications, Vol. 94, No. 1, July, 1997.

12 Li, D., Lee, L.H., and Ho, Y.C., "Constraint ordinal optimization", Information Sciences, Vol.148,
pp.201-220, 2002.

13 Zhao, Q.C., Ho, Y.C., and Jia, Q.S. "Vector ordinal optimization," Journal of Optimization Theory
and Applications, Vol. 125, No. 2, pp. 259-274, May 2005.

14 Spall, J.C. “An Overview of the Simultaneous Perturbation Method for Efficient Optimization”,
Johns Hopkins APL Technical Digest, vol. 19, pp. 482–492, 1998.

15 Spall, J.C. “Introduction to Stochastic Search and Optimization: Estimation, Simulation, and
Control”, Wiley, Hoboken, NJ, 2003.

16 “http://www.jhuapl.edu/SPSA/ “ A Website dedicated to Simultaneous Perturbation Stochastic
Approximation.

17 April, J., Glover, F., Kelly, J.P., and Laguna, M. “Practical Introduction to Simulation
Optimization”, Proceedings of the Winter Simulation Conference, 2002.

18 Carraghan, R., and Pardalos, P. “An exact algorithm for the maximum clique problem.”,
Operations Research Letters 9, pp.375-382, 1990.

19 Pardalos, P.M., Rappe, J., and Resende, M.G.C. “An Exact Parallel Algorithm for the Maximum
Clique Problem”, in High Performance Algorithms and Software in Nonlinear Optimization, De
Leone, R., Murl'i, A., Pardalos, P.M., and Toraldo, G. (eds.), Kluwer, pp.279-300, Dordrecht,
1998.

20 Gomez, F.J., and Miikkulainen, R., “Transfer of Neuroevolved Controllers in Unstable Domains”,
Proceedings of Genetic and Evolutionary Computation Conference, 2004.

21 Mataric, M.J., and Cliff, D. "Challenges In Evolving Controllers for Physical Robots", Evolutional
Robotics, special issue of Robotics and Autonomous Systems, Vol.19, No.1, pp.67-83, October
1996.

22 Nelder, J.A., and Mead, R. “A simplex method for function minimization”, Computer Journal 7,
pp. 308–313, 1965.

020.PUB

Page 38 of 39

23 Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright, P.E. “Convergence Properties of the

Nelder–Mead Simplex Method in Low Dimensions”, Society for Industrial and Applied
Mathematics Journal on Optimisation, Vol. 9, No. 1, pp. 112–147, 1998.

24 R. Hooke and T. A. Jeeves, ''Direct Search Solution of Numerical and Statistical Problems'',
Journal of the ACM, Vol. 8, pp. 212-229, April 1961.

25 Kaupe, A.F. (Jr.), ''Algorithm 178: Direct Search'', Communications of the ACM, Vol. 6, pp.313-
314, June 1963.

26 Olafsson, S. “Iterative Ranking-and-Selection for large-scale optimisation”, Proceedings of the
1999 Winter Simulation Conference, pp. 479-485, 1999.

27 Goldsman, D., and Nelson, B.L. “Statistical Screening, Selection, and Multiple Comparison
Procedures in Computer Simulation”, Proceedings of the 1998 Winter Simulation Conference, pp
159-166, 1998.

28 Glover, F., and Laguna, M. “Tabu search”, in Modern Heuristic Techniques for Combinatorial
Problems” C. Reeves (ed.), Blackwell, Oxford, UK; pp.70-141, 1993.

29 Glover, F. “Tabu search: Part 1”, ORSA Journal on Computing, Vol.1, Number 3, pp.190-206,
1989.

30 Glover, F. “Tabu search - Part II”, ORSA Journal on Computing, Vol. 2, pp.4-32, 1990.
31 Hertz, A., Taillard, E., and de Werra, D. “A Tutorial On Tabu Search”, Proceedings of Giornate di

Lavoro AIRO'95 (Enterprise Systems: Management of Technological and Organizational
Changes), 1995.

32 Kirkpatrick, S., Gelatt, C.D., and Vecchi, M.P. “Optimization by Simulated Annealing”, Science,
No 220, pp.671-680, 1983.

33 Back, Fogel, Machalewicz. “Evolutionary Computation I and II.”, Institute of Physics Publishing,
Breiman,1999.

34 Rechenberg, I. "Evolutionsstrategie: Optimierung technischer Systeme nach Prinzipien der
biologischen Evolution", Stuttgart: Fromman-Holzboog, 1973.

35 Schwefel, H.-P. "Numerische Optimierung von Computermodellen mittels der
Evolutionsstrategie", Basel: Birkhaeuser, 1977.

36 Kursawe F. “Evolution strategies for vector optimization”, Proceedings of the Tenth International
Conference on Multiple Criteria Decision Making, Taipei 1924. 07, Vol.1, pp.187-193, 1992.

37 Kursawe, F. "Evolution strategies: Simple models of natural processes?", Revue Internationale de
Systemique, France, 1994.

38 Goldberg, D. E. “Genetic algorithms in search, optimization, and machine learning.” Addison-
Wesley, 1989.

39 Beasley, D., Bull, D.R., and Martin, R.R. "An Overview of Genetic Algorithms: Part I,
Fundamentals", University Computing, Vol.15, No.2, pp.58-69, 1993.

40 Beasley, D., Bull, D.R., and Martin, R.R. “An Overview of Genetic Algorithms: Part 2”, Research
Topics, University Computing, 1993.

41 Shi, L., and Olafsson, S. “An Integrated Framework for Deterministic and Stochastic
Optimisation”, Proceedings of the 1997 Winter Simulation Conference, pp.358-365, 1997.

42 Nikolaou, M., "Model Predictive Controllers: A Critical Synthesis of Theory and Industrial
Needs", Advances in Chemical Engineering Series, Academic Press, 2001.

43 Kerrigan, E.C., and Maciejowski, J.M. "Robust Feasibility in Model Predictive Control: Necessary
and Sufficient Conditions", 40th IEEE Conference on Decision and Control, Orlando FL, pp.728-
733, December 2001.

44 Tesauro, G. “Practical issues in temporal difference learning.”, Machine Learning, Vol.8, pp.257-
277, 1992.

45 Tesauro, G. “TD-Gammon, a self-teaching backgammon program, achieves master-level play.”,
Neural Computation, Vol.6, No.2, pp.215-219, 1994.

46 Tesauro, G. “Temporal difference learning and TD-Gammon.”, Communications of the ACM,
Vol.38, No.3, pp.58-67, March 1995.

020.PUB

Page 39 of 39

47 Samuel, A.L. “Some studies in machine learning using the game of checkers.” IBM Journal of

Research and Development, 3:211-229, 1959. Reprinted in E. A. Feigenbaum and J. Feldman,
editors, Computers and Thought, McGraw-Hill, New York 1963.

48 Moore, K.L. “Iterative Learning Control for Deterministic Systems”, Springer-Verlag Series on
Advances in Industrial Control, Springer-Verlag, London, January 1993.

49 Koza, J.R. “Genetic Programming: On the Programming of Computers by means of Natural
Selection.”, MIT Press, ISBN 0-262-11170-5.

50 Gurney K. “An Introduction to Neural Networks”, UCL Press, ISBN 1 85728 503 4, 1997.
51 Haykin S. “Neural Networks”, 2nd Edition, Prentice Hall, ISBN 0 13 273350 1, 1999.
52 Puterman, M. L. “Markov Decision Processes.” Wiley, 1994.
53 Kachroo, P., Shukla, P.K., Erbes, T., and Patel, H. “Stochastic Learning Feedback Hybrid

Automata for Power Management in Embedded Systems” IEEE International Workshop on Soft
Computing in Industrial Applications, Binghamton University, Binghamton, New York, June
2003.

54 Crites, R.H., and Barto, A.G. “Improving Elevator Performance using Reinforcement Learning”,
Advances in Neural Information Processing Systems, MIT Press, 1996.

55 Mitchell, T. “Machine Learning”, McGraw Hill. ISBN 0070428077, 1997.
56 Hung, C.-C., Coleman, T.L., and Long, O. “Supervised and Unsupervised neural models for

multispectral image classification.”, Proceedings XXth International Society for Photogrammetry
and Remote Sensing Congress, Istanbul, Turkey, 12-23 July 2004.

57 Höglund, A.J., and Hätönen, K. “Computer Network User Behavior Visualization using Self-
Organizing Maps”, Proceedings International Conference on Artificial Neural Networks (ICANN),
Vol. 2, pp. 899-904, 1998.

58 Laiho, J., Kylväjä, M. and Höglund, A. "Utilization of Advanced Analysis Methods in UMTS
Networks", Proceedings 55th IEEE Vehicular Technology Conference (VTC) Spring, vol. 2, pp.
726 –730, 2002.

59 Höglund, A.J., Hätönen, K., and Sorvari, A.S. “A computer host-based user anomaly detection
system using the self-organizing map”, Proceedings IEEE-INNS-ENNS International Joint
Conference on Neural Networks (IJCNN), vol. 5, pp. 411-416, 2000.

60 Conradie, A.v.E., Miikkulainen, R., and Aldrich C. “Adaptive Control utilising Neural
Swarming.”, Proceedings of the Genetic and Evolutionary Computation Conference, New York,
USA. Adaptive Control utilising Neural Swarming , 2002.

61 Stanley, K.O., and Miikkulainen, R. “Evolving Neural Networks Through Augmenting
Topologies”, Evolutionary Computation, Vol. 10, No. 2, pp.99-127, 2002..

