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Executive Summary 
Project Monotas is a collaborative research project, part funded by the UK 
Department of Trade and Industry, to examine the use of advanced simulation and 
other computer models in the control and optimisation of large-scale mobile radio 
networks, and in particular 3G networks. In this report we review the areas of 
optimisation and control theory as potential ‘tools’ to be used in Project Monotas.  
Optimisation is concerned with the selection of optimal settings for a system, given a 
system function that can be used to evaluate the performance of a particular setting. 
Control theory deals with modelling the relationship between a system and its 
controller to produce the best system behaviour.  
The optimisation techniques presented in this report cover the areas of continuous and 
discrete valued problems, consider the effects of stochastic environments and take 
their inspiration from biology, physics, neurology, statistics and other areas. The 
literature within optimisation considers the different approaches and methods and 
acknowledges that no single technique will be able to perform perfectly on all 
problems. Further to this it is argued that each technique will, on average, perform the 
same on the range of all problems, and so it is important to consider how the 
technique aligns itself to known information about the problem being considered.  
In the control theory section the ideas covered include open- and closed-loop control 
as well as non-adaptive and adaptive control. Further to this, the adaptive control 
section considers the issues of exploring new settings verses using old settings that 
have proven capabilities for enhancing the system. Adaptive control also enables 
strategies that are developed within a simulation environment, once deployed, to 
develop further in the real system environment. This may be a useful feature of 
adaptive control that may show not only improvements in the final performance of 
the network, but if analysed after installation may reveal information about the 
network’s true behaviour.  
Our concluding remarks consider that the selection of an algorithm from those 
reviewed will involve evaluating each technique against each problem Project 
Monotas encounters. It is also noted that limits may need to be placed upon the 
operation of any of the techniques to prevent failure or system degradation that may 
be seen as unacceptable. Finally, measures for the evaluation of a technique should 
also be decided upon so that the integration of any developed technique into a system 
can be monitored.  
This report should therefore help enable Project Monotas to explore algorithms that 
will provide enhanced network performance that cannot currently be achieved. 
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1. Introduction 
The aim of Project Monotas is to develop new schemes for optimising mobile 
networks, with a particular focus on using advanced simulation methods and 
computing techniques. The partners within the consortium have a current interest in 
the newly deployed and developing 3G networks and so, although techniques and 
ideas developed during the course of the project may be applicable to a range of 
different technologies, they will be developed and evaluated with particular reference 
to 3G networks.  

The project is currently in the early stages of discovery and problem definition, and 
the literature review presented in this document represents a part of this discovery 
process. Other parallel activities include examining the current processes that are used 
in network optimisation, understanding the cost of modelling different aspects of the 
network accurately and considering which aspects of the 3G network may benefit 
most from optimisation. This means that although we have considered a range of 
different optimisation strategies and methods in this report, the exact problem to 
which they may be successfully applied is as yet undefined. Therefore, we are not 
able to perform a detailed evaluation of the different options with respect to our 
requirements at this stage, and so this process will be performed later in the project. 
Our aim has been to examine the potential ‘tool kit’ of algorithms and approaches that 
could be used within Project Monotas, without descending into too much detail 
relating to the manner in which the techniques may actually be used at this stage. In 
Section 2 we consider different ways in which the techniques examined in this report 
could be used in the optimisation of a mobile network. This is followed in Section 3 
by a discussion of the various optimisation techniques available. We examine the 
potential advantages and limitations of each technique and consider how they may be 
used within Project Monotas. In Section 4 we consider different control theory ideas, 
focusing first on non-adaptive control then moving on to consider adaptive control. 
Control techniques have the potential to facilitate a more effective approach to real-
time network optimisation than those ideas presented in Section 3. In Section 4 we 
also consider different approaches that can be used to ‘train’ or adapt controllers to 
match a particular problem. Finally, in Section 5 we present our conclusions. 
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2. Network Optimisation Strategies 
In this section we examine five possible strategies for optimising a mobile network. 
Some of them utilise simulation in the final operation of the strategy, others may need 
advanced simulation to develop and set their parameters (but may not involve 
simulation within the ultimate solution) and yet others are techniques that operate as 
approximations to the real network.  

To apply network optimisation, various network parameters must be made available 
for adjustment. Conversely, to detect changes in the network in response to these 
alterations, network statistics or real-time metrics must also be exposed. This view of 
the network is presented in Figure 1. 

Figure 1 also suggests that a simulator could replace the real network. This will have 
to be the case during the course of Project Monotas so that different techniques and 
ideas can be applied to the simulated network without costly results should they fail. 
The concept of “Optimisation Algorithms” can be expanded upon, although it could 
simply refer to any of the techniques presented later in the document. Alternative 
structures for approaching network optimisation are also going to be considered and 
some current candidates are shown in Figures 2 to 5. 

 

Optimisation 
Algorithms

Real Network 
(Simulator) 

Network 
Parameters 

Network 
Statistics

 
Figure 1 A simple diagram describing the general approach to optimising a real 
or simulated network. 

Figure 2 shows that a network simulator could be used in a final solution to enable 
network parameters to be tested before application to the real network, ie, to try out 
‘what if’ scenarios. Currently this is a common approach in automated network 
planning, but the links that enable the change in network parameters are human and 
the parameters are usually physical quantities that it may only be possible to adjust 
manually, eg, site placement, antenna downtilt. This project is aiming to consider 
network parameters that can be altered rapidly (ie, without manual intervention), since 
this would facilitate closed-loop network optimisation. The problems with the 
approach of Figure 2 are associated with simulating the network at a sufficient speed 
and accuracy to predict network statistics in sufficient quantity and quality. This in 
turn limits the ability of an optimisation algorithm to find a better set of network 
parameters in a reasonable timescale. It may therefore be necessary to produce 
multiple network simulators with differing degrees of speed and accuracy to solve 
different problems and support different optimisation algorithms. Increasing the speed 
at which the network parameters can be tuned with respect to changes in the network 
statistics may have to be approached in a fundamentally different manner. Figure 3 is 
a further proposal that uses a real-time controller with an optimisation algorithm able 
to change the manner in which the controller operates as the network changes. 
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Figure 2 The use of a network simulator to enable proposed settings to be verified 
to test for improvements and validity. 

In Figure 3, the use of a real-time controller will enable the network parameters to be 
altered in rapid response to changes in network statistics. An off-line optimisation 
algorithm can also be used to tune the controller to better match network behaviour. 
The use of a real-time controller also brings in the field of control theory, which may 
allow estimates of the relationship between the network and the controller, 
particularly with regards to stability. This may mean that any technique developed 
using this paradigm can provide reassurances about the chances of failure, but they 
will be dependent upon the assumptions made about the network.  
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Figure 3 Network optimisation can be managed rapidly with a real-time 
controller, whilst the controller’s performance can be monitored and controlled by 
an offline optimisation algorithm. 

A further alternative to the arrangement shown in Figure 3 is the use of an adaptive 
controller, as presented in Figure 4. An adaptive controller would allow on-line 
optimisation to occur whilst the network is in operation. This type of controller can 
start with poor results as the internal parameters are often randomly initialised and it 
can be ‘trained’ to control the system via some feedback mechanism. This will mean 
that such an adaptive real-time controller will need to first be trained on a network 
simulator. The advantages of this technique could involve the ability of the controller 
to continue to adapt once it has been transferred to the real network and to do so 
continuously. This could provide a greater level of performance as the network 
controller and parameters are always being updated. The amount of network data that 
can directly influence this type of controller could also be orders of magnitude greater 
than any other technique. This will be because the controller can be adapted to 
network statistics immediately and so there is no requirement for storage or 
transmitting all the data across the network. 
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Figure 4 An adaptive real-time controller could be used to rapidly apply changes 
to the network, but also to rapidly ‘learn’ and adapt to the network whilst on-line. 

The final method presented in this section is shown in Figure 5 where a model of the 
system is constructed that can be both adapted to the network’s current state and can 
also be used to either predict future states of the network given certain input 
parameters or ‘solved’ to show the optimal parameter settings given the current status 
of the system. The latter approach could use mathematical techniques such as sets of 
simultaneous equations to solve the model’s behaviour, if the model is constructed in 
an appropriate manner. Simplifications of the system will reduce its ability to predict 
far into the future, but may be reliable enough to be useful if the model is adapted as 
the system changes. This adaptation allows the model to be much simpler than the 
system and maintain a good estimate of the system’s current behaviour. 
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Figure 5 Adaptive Model-based optimisation algorithms rely on constructing a 
model of the network that can allow predictive behaviour to be evaluated or can 
be solved to give the best current action.  

These five possible methods for optimising the network are a useful start to 
considering the most appropriate approaches to different network problems. 

They do not consider the differences in scale that will exist between problems or 
between local or network wide optimisation strategies. Optimising the whole network 
in a single operation allows for the effects of each change in the network to be 
resolved and balanced before application. Alternatively, applying the optimisation 
process at a local level where only a subset of the network is examined simplifies the 
problem and allows the optimisation task to be effectively distributed throughout the 
network. This division and simplification may come at a cost to overall system 
stability as optimisations applied within neighbouring locales could cause 
destabilising behaviour of some system attributes, or degradation as race conditions or 
deadlock occurs due to controllers operating with insufficient information or 
authority. 

Considerations also need to be given to the type of changes the network undergoes. 
This is particularly important when considering that a change in conditions could 
change the optimal settings for the network. Therefore any optimisation technique 
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chosen must be able to cope with the different changes in the network, both gradual 
and stepwise in manner. Change may also be found in the transfer of any technique 
from a theoretical form, such as simulation, to the real network. The management of 
this change in the system that the technique is attempting to optimise is also an 
important consideration especially nearer the end of this project. 

Final considerations must also be given to the rates at which the network may 
generate meaningful statistics and possible limitations on rates of change that network 
parameters may undergo. Both of these will affect how rapidly the network may be 
adapted. Slow generation of meaningful statistics may limit the changes applied to the 
network’s parameters to prevent instability. It is also highly likely that statistics or 
metrics that the system outputs will be generated at different rates, possibly allowing 
some parameters to undergo more rapid adaptation than others, or for more minor 
variations to be applied rapidly and larger variations, which depend on more slowly 
generated statistics, being applied less rapidly.  
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3. Optimisation Techniques 
Optimisation in the context of this report is the selection of input parameters for a 
system that, when applied to the system, gives the best response or output from the 
system over some period of time. In the case of this report the expected system is 
some as yet undefined aspect of the 3G mobile phone network, with the best response 
also an undefined quantity. To discuss the various approaches further we introduce 
some nomenclature, as follows. 
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Each optimisation method is expected to produce parameter settings, Xk, by some 
process such that the system function, f(Xk), is set to an optimum, either a maximum 
or minimum dependent upon how the function is formulated. This system function 
may be a direct measurement of the part of the system that is undergoing optimisation 
or it may be a statistic or indirectly related measure. It may also be expected to come 
from the real network, if the optimisation process is applying parameter changes 
directly, or from a model of some description.  

Commonly within the optimisation literature the concept of a problem’s surface is 
used to relate parameter settings to the system function, f(Xk). This idea is shown in 
some of the figures used to illustrate the progression of certain algorithms later in this 
section. The surface in these plots describes the system function, but it is important to 
realise that any algorithm attempting to find the minimum or maximum of the 
function does not have the full knowledge of the system function’s surface. An 
example is given of two surfaces in Figure 6. The five crosses signify where the 
function has been sampled, and are in the same positions for Figure 6(a) and Figure 
6(b), but the underlying surfaces are different. An optimisation process that is just 
measuring the surface height at the five positions shown cannot detect this difference. 
It is only by exhaustively measuring the surface at each point in a function that the 
true surface structure can be found. However, this can be a time-consuming process, 
and in many situations it can be impractical due to the number of parameters (ie, the 
number of dimensions associated with the surface) and the variation possible in those 
parameters. We therefore consider optimisation algorithms that do not rely on 
exhaustively evaluating the system function. 
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(a) (b)  
Figure 6 An example of two system function surfaces, five samples (crosses) 
from each function give matching results with different true surface shapes. 

The selection of an optimisation algorithm is a difficult task, and in some cases it is 
simpler to state that a technique would not be useful because it cannot deal with 
known constraints. Alternatively some mathematical techniques may be designed to 
optimise problems that can be approximated by quadratic equations, but it may be that 
a particular system is more complex. There also exist optimisation techniques such as 
genetic programming whose full behaviour is not understood by the research 
community even now, and yet have been successfully applied to a wide range of 
problems. This can mean that selecting an optimisation technique suitable for solving 
a problem may be a ‘hit and miss’ process. Furthermore, a paper by Wolpert and 
Macready [1] suggests that even if an optimisation technique is shown to produce 
‘good’ results up to a certain point, there is no guarantee that the same technique will 
be able to continue to optimise further based on its past performance. This paper also 
argues that over the set of all problems, each optimisation technique will perform on 
average the same as any other, but it is likely that there will be variation in 
performance on an individual problem basis. They also consider that problems where 
the performance for a particular optimisation technique is ‘good’ often reflect an 
alignment in structure between the problem and the optimisation technique. They 
therefore advise that any optimisation technique will benefit from including as much 
domain knowledge as possible to tailor the technique based on this knowledge.  

Other considerations are the realistic constraints of time and resources when applying 
an optimisation technique to a problem. Techniques may or may not provide 
guarantees to reach the global optimum and even if a technique is guaranteed to find 
the global optimum, it may not be possible for it to achieve this within practical 
timescales. A more desirable property may be the arrival at a ‘good’ local optimum 
that satisfies some measure of ‘closeness’ to the global optimum within a reasonable 
timeframe. 

In the remainder of this section we consider a wide range of optimisation techniques 
that have different limitations and may hopefully also align to different problems 
uncovered during Project Monotas.  

3.1. Random Search 
Randomly searching the problem domain for an optimal solution to a problem is one 
of the simplest methods used for optimising a set of parameters. It can be treated as a 
baseline algorithm. In circumstances where there is insufficient knowledge of the 
problem domain to infer any sort of structure it may perform comparably or better 
than any other technique that places constraints upon how new parameters are 
selected to be tested. The random element of the search can be altered if the 
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distributions from which the random parameters are selected from are not uniform. 
These distributions can be altered to contain domain specific knowledge. Any further 
alterations lead to a random search becoming more similar to the optimisation 
techniques presented in the following sections.  

3.2. Relaxation Methods or Optimisation Frameworks 
Optimisation typically considers problems that are hard to solve; they may be 
formalised as Non-deterministic Polynomial time (NP)-hard or NP-complete 
problems, or they may be associated with a simulation or stochastic process. In 
considering these problems, methods for changing the problem to a simplified and 
more solvable one have been proposed. This process is called relaxation, and can 
involve removing some of the constraints to input variables or changing some of the 
assumptions a simulation makes. This should enable quicker computation and the 
following ideas are approaches published in the optimisation literature that consider 
how to relax a problem to solve it more effectively. 

3.2.1. Sample Path 
Sample path optimisation [2, 3, 4, 5] is designed to provide a framework for selecting 
optimal parameters when using a simulation that behaves stochastically. The 
technique relies on being able to re-run a stochastic simulation with the same random 
effects occurring at the same time. This then allows a set of parameter settings to be 
developed that are optimal for a single set of random events within the simulator. This 
process is then repeated, tuning the same parameter settings to a new set of random 
effects. The chosen settings should become more general as a greater number of sets 
of random effects are used to ‘train’ or select them. The combination of optimal 
settings for specific sets of random events and generalisation because of the number 
of sets used, should give good or optimal performance for new sets of random events.  

3.2.2. Ordinal Optimisation 
Ordinal optimisation [6, 7] can be viewed as an approach to optimisation as well as a 
separate technique. Ordinal optimisation reconsiders the question of searching for an 
optimal solution given a finite time and more realistically attempts to find a ‘good’ 
solution. This more realistic approach suggests a framework for optimising problems 
that are difficult to optimise given constraints that do not allow an algorithm to iterate 
through many different parameters. The ordinal optimisation [8, 9] approach relies on 
sampling theory that states that the probability of selecting a ‘good’ solution, ie, a 
solution in the top x%, is unaffected by the size of the problem domain the parameters 
are taken from, but is related to the number of different parameters, viewed as 
samples, taken from the problem domain. This will mean that given a target 
percentile, eg, top 5%, it is possible to estimate the likelihood of one of the selected 
parameter sets being a member of the top 5%. The added concept of optimising the 
parameters in an ordinal manner also means that instead of calculating the degree of 
improvement a new set of parameters makes (ie, how much better is Xk+1 than Xk?), 
the question is simply: is Xk+1 better than Xk? This change in approach should allow 
for calculations and simulations to take a less detailed or costly approach and also 
cause ordinal optimisation to converge on a ‘good’ solution more rapidly than 
cardinal optimisation techniques [10,11]. This allows for an initially large number of 
parameters options to be chosen and then all tested using a crude simulation to rank 
each parameter set. This ranking then defines which parameter sets to apply to a more 
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detailed simulator. This process of applying an approximation to the system function 
to rank different parameter sets can be repeated, enabling a large number of different 
parameters to be investigated, and yet not wasting undue processing time on 
evaluating poorly performing parameter sets. Additional work on ordinal optimisation 
considers ordinal optimisation with constraints [12] and vector ordinal optimisation 
[13]. 

3.2.3. Perturbation Analysis 
Gradient estimation within a multidimensional problem space requires many 
evaluations of the system function if the gradient estimate is generated from finite 
differences. This process is very dependent upon the cost of evaluating the system 
function, and also upon the number of dimensions in the problem space. Techniques 
have therefore been developed that attempt to calculate the gradient via other means, 
and perturbation analysis is one such method [14,15]. To apply perturbation analysis 
it must be possible to alter the system function, eg, if the system function is a 
simulator the source code must be available. The algorithm requires that the 
calculations at each stage calculate not only the values for the current settings, but 
also for settings that are slightly different or perturbed. This is a different process to 
applying multiple separate settings because it places a restriction on the perturbations 
to reduce the amount of additional calculation. This constraint requires any 
perturbation to be so small that it does not affect the order of any events within the 
system. This can limit the usefulness of the technique for systems that are excessively 
sensitive. It also complicates the system function calculation, but in a high 
dimensional problem should provide quicker estimates of the gradient than finite 
difference methods. Further developments and research into perturbation analysis in 
stochastic approximation can be found in Reference [16]. 

3.2.4. Branch and Bound 
Branch and bound optimisation strategies typically rely on mathematical methods to 
estimate lower bounds and realisable bounds to a problem. Lower bounds describe the 
best results any settings can achieve on the current problem. This enables the process 
to assess if it has found the global optimum, or if it is sufficiently close. Realisable 
bounds or results are measured from applying settings to the system. Branch and 
bound then uses these two methods to take a problem and measure the theoretically 
best case given by the lower bound and the best solution that has been found given by 
the realisable bound. If these two bounds are the same then the optimal values have 
been found and the process may end. If not, then the problem is separated into sub-
problems and both bounds are recalculated. Lower bounds in sub-problems that are 
greater than the current best realisable bound will mean that the selected sub-problem 
cannot contain any better results. This prevents additional calculation of the realisable 
bound.  

3.2.5. Metamodels 
A metamodel can be defined as a simpler model of a more complex model. In 
simulation optimisation it can be used to approximate the simulation process to filter 
the parameters applied to the actual simulation. This is particularly useful when the 
simulation process can take a large amount of processing. A metamodel is a coarse 
representation of the simulation process used to reduce the number of times the 
simulation must be run to find an optimum. It can be constructed from modelling the 
relationship between input and output parameters of the simulation, treating the 
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simulation as a black box. It may also monitor the expected error between its results 
and the simulation’s results, giving a confidence measure alongside a setting's 
suitability. April et al [17] suggest the use of metamodels with particular reference to 
the type of techniques presented in Section 3.5.2. 

Alternatively metamodels can be constructed using a model that is easily solved. For 
example it may be known that the system is non-linear and a linear metamodel could 
be adapted to match the current behaviour of the network. This could be extended to 
non-linear modelling techniques that may be solvable mathematically and can also 
approximate to a system’s behaviour. Both these use the metamodel to produce 
solutions that can be applied to a more advanced simulation or model or to the real 
system. 

3.2.6. Clique Detection 
Clique detection [18,19], although not actually an optimisation technique, is a useful 
strategy for aiding in the optimisation of some graph problems. In network 
optimisation, it can commonly be the relationships between many base stations or 
other network points that makes sharing some common resource more difficult. 
Clique detection allows areas within the network that have a high degree of 
“connectedness” to be extracted and these areas can be called clusters or cliques. This 
can enable difficult sub-sections of the network to be optimised before optimising the 
system as a whole. 

3.3. Using ‘Optimal’ Settings in the Real World 
In the course of optimising network parameters, some aspect of network modelling 
must take place. This may be simple equations or complex simulations, but each 
model cannot fully represent a real network. This therefore ties us to being able to 
make optimisations on models and these ties may mean that optimal parameters for 
the model are not as optimal on a real network. It is also important to consider that the 
error between the model of the network and the network itself may be significant 
enough that the error could grow, ie, there is an instability or cumulative effect that is 
not modelled and therefore the optimal parameters are unable to balance these effects. 
Applying noise to aspects of the model to include a degree of uncertainty in the model 
may enable the transfer of ‘optimal’ parameters between a model and a real system. 
This approach has been considered in Reference [20] and there was found to be a 
distinct difference in the ability of ‘optimal’ parameters to be transferred to the real 
system and this was dependent upon where the noise was applied in the control loop. 
Further discussions of the transfer of robotic controllers from simulation to the real 
world show a high degree of sensitivity to the degree of noise added to a simulation 
[21].  

3.4. Continuous Value Optimisation Methods 
The following techniques and methods are designed to be applicable to continuous 
valued parameters. This does not mean that they cannot be applied to discrete valued 
problems, but they will need to be altered to cope with this added constraint. It may 
also be impossible to define a gradient for some problems so the techniques in 
Section 3.4.1, which are gradient-based methods, may need to be applied on sub-
problems that do not include these limitations. Section 3.4.2 describes methods that 
do not require gradient information to work. 
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3.4.1. Gradient Based Methods 
3.4.1.1.Stochastic Approximation 
Stochastic approximation is an optimisation technique that attempts to provide 
optimum parameter settings even given results that suffer from noise. Mathematically 
it has been shown to ‘weakly’ converge on the system optimum after an infinite 
number of iterations. The actual process of stochastic optimisation is governed by the 
following equation with its accompanying constraints. 
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where the reduction of ak, reduces the effect of the gradient of the system function as 
the number of iterations increases. Unlike some of the other techniques, stochastic 
approximation does not compare the new parameters, Xk+1, with the old, Xk, and select 
the best with respect to f(X). Instead it requires the process to run sufficiently long 
that the mean gradient directs the optimisation process to the system minimum. This 
also allows local minima to be escaped from as the estimated gradient is expected to 
vary if the simulator contains a stochastic element. Alternatively the gradient 
estimates may be perturbed by a random variable to simulate this behaviour and 
enable the technique to escape local minima. Although stochastic approximation does 
provide a simple process to search for or calculate the optimum, it does require the 
gradient to be calculated at each iteration. This can be an expensive measure to 
calculate since to calculate it in n-dimensional space requires n+1 different 
measurements to calculate a simple gradient measure. More accurate difference 
methods require even more measurements, but this process must be repeated after 
each alteration of the parameters, Xk. This problem has led to a number of techniques 
that attempt to calculate the gradient more efficiently, eg, perturbation analysis 
presented in Section 3.2.3. 

3.4.1.2.Gradient Descent Method 
The gradient descent method is a very simple method for optimising a problem. The 
technique randomly selects its initial set of parameters. It then compares the ‘fitness’ 
of the current parameter set with that of neighbouring parameter sets. The parameter 
set with best fitness is then chosen as the new parameter set. This process is then 
repeated with the current parameter set being compared to its neighbours repeatedly 
until either a certain number of iterations are performed, or the current parameter set 
is better than any of its neighbours, in which case an optimum is found. Gradient 
descent does not avoid local minima, but it can be used within more advanced 
techniques as a sub-technique. The distance between the current parameter set and its 
neighbours is controlled by the gradient of the system function for the current 
parameter set. This is reflected in Figure 7 where two start points are selected, one on 
the left and the other on the right. The right half of the system function has a steeper 
gradient so the selected neighbours are a greater distance from the current parameter 
setting. This allows the gradient descent process to reach the minima more rapidly in 
the right hand half of Figure 7. 
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Figure 7 A comparison of the effects of the gradient on the convergence of the 
gradient descent method. The two starting points on the left and right are both 
able to find the minimum, but with a different number of iterations. 

3.4.2. Non-Gradient Based Methods 
3.4.2.1.Nelder-Mead Simplex 
The Nelder-Mead Simplex algorithm [22] performs its optimisation process whilst 
maintaining d+1 solutions, where d is the number of dimensions. This would allow a 
simplex to be constructed from the d+1 solutions. The algorithm is initialised with 
parameters X0, X1, X2�.Xd+1, which are randomly distributed at the extremes of 
feasible solutions to a problem. Each X is then evaluated using the system function, 
f(X). The parameter set with the worst cost is then removed and replaced by a new set 
of parameters. This new parameter set is constrained to be on the line that lies 
perpendicular to a surface that can be formed by all the other parameter sets in the 
problem space and passes through the discarded point. After the point is added to the 
simplex, the next worst point is removed and the simplex is redefined again. This 
iterative replacement of parameter sets causes the simplex to reduce in size and 
converge on a minimum as a whole [23]. The stopping condition for the optimisation 
process could be that a number of iterations of the algorithm have been performed or 
the improvements or size of the simplex has reached a certain threshold.  

In Figure 8 we provide a simple example of the Nelder-Mead Simplex algorithm in 
operation. A simplex is formed in a two-dimensional problem space using three 
vertices. The figure illustrates how the simplex shrinks as the vertices of the simplex 
are replaced. In this example the initial parameters are represented as the outer corners 
(the blue triangle). The first iteration then considers the top right hand vertex to have 
the worst performance. This parameter setting is then replaced with an improved 
setting found along the line running perpendicular to the ‘surface’ formed by the other 
two vertices and the rejected parameter set (the parameter sets now form the green 
triangle). The second iteration then considers the left most parameter setting to give 
the worst performance and so this is replaced with another new vertex, again with the 
new vertex being constrained to lie on the line perpendicular to the ‘surface’ formed 
by the other vertices and the rejected parameter setting (the parameter sets now form 
the red triangle). The simplex has thus reduced in size, and should be closing around 
the optimum of the system. 
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Figure 8 A simplex in 2D problem space is shrunk by replacing vertices to form a 
smaller simplex centring upon a minimum. This is repeated, shrinking the simplex 
further. 

3.4.2.2.Hill Climber 
The hill climber [24] algorithm is very similar to the gradient descent algorithm, with 
the most notable exception that it does not use gradient information to guide its 
optimisation approach. It is also formulated to find the maximum of the function, f(X), 
but this can be changed to searching for the minimum by returning any result 
multiplied by minus one, ie, -f(X). The hill climber algorithm is started with a random 
parameter set, X0. The result of applying this parameter set is then compared with its 
neighbour(s). The neighbours are selected by altering parameter values in X0 to 
produce new parameter values, Xn. The hill climber can then either select the best 
neighbour after evaluating all of its neighbours, or it can select the first neighbour that 
offers an improvement. In either case the process is then repeated with new 
neighbours being generated and better neighbours replacing the current best solution. 
The process stops when none of the neighbours are an improvement on the current 
parameter set. This can occur when the hill climber has found the global or a local 
maximum as there are no guarantees of finding the global maximum in hill climbing.  

Figure 9 shows an example problem surface and three randomly selected starting 
parameters for X0. In Position 1 the hill climber finds a local optimum by gradually 
comparing its current best solution to its neighbours and selecting those further up the 
slope. This behaviour is repeated for Points 2 and 3, but Point 3 finds the global 
maximum. Whether or not Point 2 results in the global maximum being found is 
dependent upon Point 2’s position within the ‘valley’. As a result of the hill climber 
being unable to escape local maxima (eg, such as the iteration starting from Point 1), 
the hill climber should be restarted with a new random X0. This enables more of the 
parameter space to be searched for optimal solutions. Improvements on the basic hill 
climbing strategy have been proposed in Reference [25]. 
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Figure 9 An example problem surface in black with three randomly selected 
starting parameters, X0. Each parameter is shown to find the global or local 
optima. 

3.5. Discrete Value Optimisation Methods 
The following sections describe a range of optimisation methods that consider 
discrete valued problems. Section 3.5.1 considers two methods that are designed to 
optimally select parameter settings when there are a very limited number of possible 
variations. More general approaches to optimisation of discrete valued problems with 
many possible parameter settings are considered in Section 3.5.2. 

3.5.1. Small number of input values 
Many of the techniques presented in this report attempt to select the optimal 
parameter settings given a large number of different options. This section particularly 
focuses on a different aspect to optimisation that attempts to optimally select a set of 
parameter settings given the system that is needing to be optimised is stochastic in 
nature. This means that the optimal parameters may need to be resilient to different 
random effects and that any given simulation may give better results than the 
‘optimal’ setting for a less than optimal setting. 

3.5.1.1.Rank and Select 
Rank and selection [26] takes a cardinal approach to optimally selecting some 
parameter set from a small number of options. The process of rank and selection 
evaluates all the parameter sets using the stochastic system function and collects 
results for each set. This is then repeated a number of times with the mean and 
variance of the results for each parameter set being collated. The results are then 
ranked according to some combination of the mean and variance before either the top 
setting is selected or the top x settings are selected and the process is repeated to 
obtain even more accurate results for each of the settings before a final selection is 
made. 

3.5.1.2.Multiple Comparison Procedures 
Comparison procedures [27] differ to rank and selection by comparing the different 
settings in an ordinal manner. Instead of calculating the mean and variance of each 
technique according to the system function, each of the parameter settings are applied 
to an approximation of the stochastic system function. This approximation should 
enable direct comparison between different settings on an instance of the system 
undergoing similar stochastic effects. The results for the different settings are then 
compared, with each setting winning or losing in comparison to all the other settings. 
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The results for each setting and each approximation of the system function are then 
combined to give the parameter settings that perform the best. This best can then be 
used as the proposed optimum, or the top x settings can be selected again and the 
process repeated. 

3.5.2. Large number of input values 
Problems that involve a large number of different input values will need some 
systematic method of searching for optimal values. This section considers many 
different algorithms and ideas for optimising a set of parameters with ranges of values 
that mean an exhaustive search is impractical in the available time. 

3.5.2.1.Tabu search 
Tabu search [28, 29, 30, 31] builds upon the idea of inverted hill climber1 
optimisation, but also includes the ability for the optimisation process to temporarily 
go ‘up hill’, whilst at the same time attempting to avoid returning to the same point in 
the problem space. The particular aspect that gives tabu search its name is that as the 
technique examines the parameter sets that neighbour the current best solution, some 
of the neighbours are considered “tabu”2 and are prevented from being selected as the 
next ‘best’ point in the parameter space. This tabu status may be caused by the point 
having been previously encountered, or having been in a direction that has commonly 
or uncommonly been taken in the search for the optimum. This limits the number of 
possible options for a tabu search algorithm to take. The rules for generating the tabu 
points at each new position can contain problem specific knowledge, but will 
typically involve some aspect of the history of the search so far. Each iteration of tabu 
search considers the neighbours of Xk and selects the neighbour with the lowest f(X). 
This allows the search process to escape local minima, if the tabu list can contain 
information on the location of previous optima. Although points are given tabu status, 
they may still be evaluated with the system function. This enables an aspiration 
function to select tabu points that are significantly better than non-tabu points, and 
override the tabu list given that the point gives a significant improvement.  

Additionally tabu search can also include the notion of a second fitness function. This 
second function can be used to escape local minima, assuming the alternative function 
relaxes system constraints. These behaviours, matched with the ‘memory’ aspects of 
tabu search, attempt to enable local minima to be escaped. 

In Figure 10 we show a possible path that could be taken in a tabu search. In common 
with many methods the initial settings are selected at random and the tabu search 
proceeds to find the local minimum by considering its neighbours. On reaching the 
local minimum it continues to the right as neighbours to the left are present in the tabu 
list having been recently evaluated. This allows the tabu search method to escape the 
local minimum, before (at the third cross) it is able to descend into a better minimum. 

                                                 
1 Here the term ‘inverted hill climber’ is used to signify that the algorithm is formulated to descend into 
the valley, rather than climb the hill. 
2 “tabu” is an alternative spelling of “taboo”, and is used here to match the literature that describes the 
“tabu-search” method. 
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Figure 10 An example of a tabu search method finding a minimum for a simple 
problem surface. 

3.5.2.2.Simulated Annealing 
Simulated annealing [32] is an optimisation approach that takes an analogy from the 
physical process of annealing materials to achieve good internal structure by 
managing the cooling process. Annealing attempts to prevent structures forming in a 
material that are not at a minimal energy state and in simulated annealing this is 
equivalent to avoiding local minima. In annealing the temperature is lowered, and 
during simulated annealing the allowable variations in system ‘energy’ are reduced 
over time. This energy must be defined by the system being optimised and should 
reduce as a more optimal set of parameters is found. During simulated annealing the 
optimised parameters are selected dependent on the change in system energy. New 
parameters that lower the system energy (ie, provide a better solution) are kept. 
Parameters that produce a higher level of energy within the system (ie, provide a 
worse solution) are also kept with a probability, p , as defined by the following 
equation: 

T
E

ep
δ−

=       (2) 

where E∂  is the positive change in energy, and T  is the ‘temperature’ of the system 
at its current stage of annealing. This means there is a lower probability of accepting 
changes in parameters that cause greater increases in system energy (ie, provide worse 
solutions) as the temperature, T, is lowered. This behaviour of simulated annealing 
allows for the optimisation process to avoid local minima to a certain extent by 
accepting some changes that give worse results. The initial starting ‘temperature’ of 
the system, when to lower the temperature and by how much are all considered part of 
the annealing schedule. These aspects can be difficult to define, as can a useful 
measure of the energy in the system to use to indicate any improvements. 

Figure 11 shows the progression of a simulated annealing technique towards a 
minimum. The initial parameter settings, Point 1, are randomly selected. Randomising 
some aspect of the current parameters generates a new parameter set. Thus from Point 
1, the technique compares Point 2. This is an improvement and so is accepted, 
similarly Point 3 and 4 are both improvements. Point 5 is however a worse option to 
that of Point 4, and its selection relies on the temperature of the system. A high 
temperature gives a greater likelihood of acceptance and a low temperature will be 
more likely to reject this degradation. Assuming Point 5 is accepted the process would 
continue on to Points 6 and 7. It is then unlikely that the parameter setting of Xk will 
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‘escape’ the minimum as the temperature is lowered, because the probability of the 
system having sufficient energy to jump out of the valley will become very small. 

 1
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Figure 11 An example of the simulated annealing optimisation method finding a 
minimum for a simple problem surface.  

3.5.2.3.Evolutionary Programming 
Evolutionary Programming [33] is one of three algorithms presented in this report that 
are based upon the biological theory of evolution. Evolutionary programming is 
distinct from the following methods in its use of selection and mutation in defining 
new settings for the system. In evolutionary programming the parameters, Xk, are 
encoded in a ‘genome’. This genome is then subjected to a process of mutation where 
each part of the genome may be altered causing a ‘mutation’ in the genome. The 
genome may be a simple vector, but may include transformations of various 
parameters to better fit the processes of mutation. One such transform is the 
conversion of integers from a standard encoding scheme to a gray code. This is a 
useful conversion when the effects of mutation are considered on the binary form of 
an integer. A single bit ‘mutation’ or toggling for a binary encoded number can give a 
very large mutation if the random process toggles one of the most significant bits. 
Gray coding integer values however can limit the numerical distance between the 
original and the mutated values. This can allow the parameters to be altered in a less 
volatile way. To add to the concept of mutation, evolutionary programming also 
maintains a ‘population’ or set of different parameter settings rather than a single 
current best. This population is added to by taking a current member and applying 
mutation. Typically this may be repeated for each member of the population. A 
process of selection is then used to reduce the population size, maintaining it at a 
predefined size. Selection is commonly a probabilistic process that favours genomes 
that have better performance for the system, but does not guarantee that unfit 
members of the population will be ‘culled’. Through selection, a member can remain 
in the population through multiple generations. Evolutionary programming differs 
from genetic algorithms in its ability to operate upon parameters that may contain real 
numbers.  

3.5.2.4.Evolutionary Strategies 
Evolutionary strategies [34, 35, 36, 37] are very similar to evolutionary programming 
techniques. An evolutionary strategy can use the processes of selection, mutation and 
recombination (a process similar to the cross over mechanism found in genetic 
algorithms). It is designed to be able to optimise real valued problems. The genome of 
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an evolutionary strategy contains not only the parameter settings, but also the settings 
that control the mutation. Variations applied to each parameter are zero mean 
Gaussian distributed, allowing larger variations less frequently, but with the 
aforementioned settings the mean and variation of the distribution can be controlled. 
The processes of mutation and selection are similar to those in evolutionary 
programming, but the process of recombination is different. Recombination uses 
multiple ‘parent’ genomes to produce a new genome for selection. This recombination 
can for example take the first part of one genome and the second part of another to 
make a new genome to be added to the population before selection. There are many 
different forms of recombination and the process can also be tailored to fit the 
specifics of the problem undergoing optimisation. 

3.5.2.5.Genetic Algorithms 
Genetic Algorithms [38, 39, 40] consider the parameters of a problem to be a vector 
representing the ‘genes’ of the solution. A number of possible solutions are then 
generated to form an initial population of solutions; each member of the population 
has their own genes forming a genome. This population then undergoes a series of 
transformations to form a new population. These transformations can involve 
selection, mutation, and cross over or some other form of combining. After generation 
each genome is applied to the system and its ‘fitness’ or response from the system 
function is measured. Each member of the population is typically used to create the 
new population in proportion to its ‘fitness’. The selection process selects members of 
the population that are to be involved in producing the next generation of solutions. 
This removes genomes that are considered unfit, typically in a probabilistic manner, 
thus favouring the ‘fittest’ members. However, it also allows poorly performing 
members a chance to contribute to the next generation. After selection, the process of 
cross over can be applied which takes genes from two or more members of the 
population and combines different parts of the parent genes to form a new genome or 
solution. Mutation can then also be applied altering the genes (or parameters). Both of 
these processes allow for the parameter space to be investigated further. Implementing 
a genetic algorithm does not require that selection, mutation and cross over are all 
performed. An example of a genetic algorithm being used to optimise a set of 
parameters is shown in Figure 12. 

In Figure 12 the population is initialised with 3 random genomes, 1a, 1b, and 1c. These 
genomes are then evaluated and 3 new members of the population are created through 
mutation and crossover to form members 2ab, 2ac and 2bc. The total population is then 
put through a process of selection where it would be expected that the second 
generation members would be more likely to be selected as they have better fitness in 
this minimisation problem. Member 3 may then be a likely descendant of this new 
population, but it would depend on exactly how the mutation and cross over 
operations worked on the underlying genome. 
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Figure 12 A possible history of a genetic algorithm searching the parameter 
space. The first generation, 1a, 1b, and 1c are mutated and combined to form the 
second generation, 2ab, 2ac and 2bc. 

Genetic algorithms are still under research to understand exactly how each aspect of 
selection, mutation and cross over affects the optimisation process. In general, without 
mutation a population’s diversity may degenerate as variation in genes are likely to be 
lost without any method for regaining variation. With mutation, a perfect solution is 
always degraded, and an imperfect population can reach an equilibrium point where it 
cannot improve due to the level of mutation occurring in each generation. Crossover 
can increase the rate at which good solutions are found. One issue with genetic 
algorithms is the common requirement to be able to control the solution using a 
genome (set of genes), which is typically binary in nature. 

3.5.2.6.Nested Partition 
The nested partition algorithm [41] for optimisation attempts to solve optimisation 
problems by dividing the parameter space into partitions. The initial steps of the 
algorithm consider the whole of the parameter space and partition it into a number of 
partitions. Each of these partitions is then sampled from, and the results from each 
sample taken from the parameter partition are combined to give a representative value 
for that partition. An example of a search space having undergone this process is 
shown in Figure 13a. The partition with the best representative value is then divided 
into more partitions whilst all the other partitions are combined to form an outer 
partition. This is shown in Figure 13b. The process is then repeated with these new 
partitions. It is then expected that the algorithm will slowly select a smaller and 
smaller partition that has increasingly favourable results. If, however, at any stage the 
outer partition contains a better representative value then the algorithm selects the 
outer partition as the new partition and this is divided again into new partitions and 
the process continues. This option to select the outer partition enables nested partition 
optimisation to escape local minimum to some degree. To make sure the 
representative value is a useful measure, the number of samples taken from all the 
partitions is dependent upon the size of each individual partition. The algorithm can 
stop when the selected partition contains a single parameter setting or the partition is 
below some other size-based threshold. Alternative stopping conditions such as after a 
certain number of iterations or when a solution is close enough to a theoretical 
optimum may also be used. 
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(a) First Iteration (b) Second Iteration  
Figure 13 Applying a nested partition technique to an irregular shaped search 
space. 
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4. Control Theory Techniques 
Although the main task of this report is to evaluate current optimisation approaches, 
in practice, the use of these techniques with a simulator may not reach the ‘real-time’ 
operation criteria that may be needed to optimise certain aspects of the 3G network. 
Control theory could provide methods for controlling the network in ‘real-time’ and if 
the controllers were able to be adapted then this may provide a method for optimising 
the ‘real-time’ behaviour of the network. There are also sections of the control theory 
community that consider adapting the controllers whilst they are operational. This 
chapter therefore considers static or non-adaptive control theory and also adaptive 
control theory. 

4.1. Non-adaptive Control 
Control theory has been applied in many industrial settings where a process or plant 
must be controlled to give a certain output. Examples are found in managing chemical 
reactions in a chemical plant, the movement of a conveyor belt system in a factory or 
the power control between a mobile handset and a base station in the 3G mobile 
network. This control can either be open- or closed-loop in nature, where a closed-
loop system takes the output of the process or plant and uses it to make future control 
decisions. In both cases the plant is modelled by a transfer function that takes the 
output of the controller and attempts to reflect the output of the plant. This modelling 
of the plant allows an open-loop system to predict the response of the plant to given 
input settings. It can also enable a feedback loop of the controller and the plant to be 
analysed to ensure ‘good’ behavioural properties of the overall system. These ‘good’ 
properties will include some measure of system stability. Stability in control can mean 
that for a given bounded input, a system produces a bounded output. This criterion 
relies on the state of the system being controllable and observable, ie, it must be 
possible to set the inputs of the plant such that a system state is reachable, and it must 
also be possible to observe the state of the system to avoid ‘bad’ system states. If 
either of these criteria is not satisfied, then stability may not be guaranteed.  

4.1.1. Open-loop Control  
Open-loop control is a type of control strategy that contains no feedback loop. It can 
be used when the inputs to a system can sufficiently control a system. Turning on a 
light would be an open-loop system, but if the light were to have blown no feedback 
is present to inform the controller that the behaviour has failed to meet its aims. We 
do not expect open-loop control to contribute significantly to Project Monotas. 

4.1.2. Proportional-Integral-Derivative Control 
The Proportional-Integral-Derivative controller or PID controller is a commonly used 
feedback controller. Its three separate parts provide different abilities to control a 
system. If we consider the system function f(X), and the target or reference value for 
our system then the difference is the current error. The proportional aspect of the 
controller will change the parameters, Xk, proportionate to this error. The integral 
controller changes with respect to past error between the reference level and the 
system output. The differential controller changes Xk with respect to the current rate 
of change of the system output. Each of these different controlling aspects adds the 
ability to select the most desirable control behaviour. Figure 14 shows this 
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graphically, highlighting the aspects that the proportional, integral and derivative parts 
of the controller use to influence the degree of their affect on the new parameters.  
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Figure 14 Given a reference signal, the proportional, integral and derivative 
aspects of a PID controller act on different aspects of the current output. 

In designing a PID controller the system itself must also be modelled. This allows the 
overall system behaviour to be designed to match requirements of stability, speed of 
response and whether or not the system output may over shoot the target value.  

If the modelling of the system is flawed it may cause instability and deviant 
performance. However, there are methods to make a controller more robust against 
certain inaccurate estimates of the system.  

4.1.3. Model Predictive Control 
Model predictive controllers (MPC) [42, 43] attempt to control the error that a system 
will produce given its past, present and predicted future responses. This can allow a 
model predictive controller to cause the current error to increase given that the 
expected error experienced over the predicted future will be lower. This type of 
controller has been used successfully in many industrial applications. It models a 
system in a similar way to a PID controller, but has the added advantage of predicting 
future responses. This can allow constraints on input and output parameters to be 
fulfilled by predicting the future behaviour of the system and so avoiding current 
behaviour that may cause these constraints to be violated in the future.  

4.2. Expert Systems 
Expert systems are rule-based programs that can take a set of predefined rules and 
apply them through inference to diagnose a problem or generate a response to a 
situation or system state. The rules in an expert system are a series of ‘if-then’ 
statements that are typically defined by an outside expert. There is a possibility that 
the rules could be adapted and altered by some external optimisation scheme, but the 
impact of alterations to rules can be hidden, as there are no predefined connections 
between rules that the method of inference would use. Expert systems can be directly 
improved by an expert, and new knowledge can be added to the system to enable it to 
respond to new stimuli and conditions as well as to give different responses. If an 
expert system was adapted by an optimisation process, with the choice of rules to 
include within an expert system controller being optimised, it may enable a controller 
to be developed that would be able to give an explanation for its behaviour. This may 
prove useful in developing an understanding of any system being controlled. 
However, because the outputs of the system are generated from the inference of 
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different rules, this may produce a system that performs stably over all tested cases 
and may behave errantly for situations that may be different by a fraction. 

4.3. Adaptive Control 
Adaptive control in its forms presented in the next sections attempts to use a system’s 
history to improve the current control strategies. This can be  either through direct 
alteration of a controller’s own parameters, or through those of a model. The study of 
adaptive control and learning systems has developed from the fields of psychology, 
statistics, computer science and neuroscience. Because of this, some of the ideas are 
biologically inspired, some have a strong mathematical basis and others have been 
developed iteratively as the power of computers has grown. Initially we consider the 
trade off between exploring new settings for a system and exploiting known settings 
in Section 4.3.1. The next two sections then discuss the need for any adaptation of the 
controller to be as fast as the underlying system, and the difference in approach 
between adaptively modelling the system being controlled or adaptively controlling 
the system directly. 

4.3.1. Exploitation vs Exploration 
Before employing any adaptive control strategy it is important to consider the trade-
off between exploitation and exploration of any adaptive control strategy. If the 
primary consideration of a control strategy is exploitation, then all actions performed 
by the system will be targeted at placing the system into an optimal configuration 
given the current knowledge of the system. This optimal configuration may not be 
optimal in any global sense, but relies on knowledge captured from either the designer 
or from previous exploration. A controller that only considers exploitation may 
become fixed in its ability to make control decisions. Exploration however attempts to 
select parameters that may provide future benefits, but that contain an aspect of risk in 
the form of unknown effects. During any exploration of system settings the 
performance of the system is unlikely to be the best, given the current knowledge of 
the system. It should, however, allow new control behaviours to be discovered and 
possibly better controller behaviour to be discovered. In a commercial system such as 
a 3G network, system degradation due to exploration would also need to be quantified 
or limited. Examples are also given in the literature that suggest that even if a system 
seeks to only take the current ‘optimal’ action based on past history, ie, to act 
exploitatively, that the system may explore due to other factors, such as stochastic 
effects within the system or other complex effects. These examples are found in 
developing game playing software for backgammon [44, 45, 46] and checkers [47] 
where only exploitative methods are used, but the controllers ‘learn’ or adapt. It could 
be hypothesised that in the case of backgammon exploration is forced by the random 
elements of the dice used to govern the movement of pieces, and in checkers by the 
controller playing against itself.  

4.3.2. Rates of Change: the System vs the Controller 
Adaptive controllers must be able to change faster than the system they are 
controlling. If a controller adapts slower than the system it is controlling, it will not be 
able to control the system optimally and the system as a whole will suffer from lag. 
This constraint will limit the accuracy and processing time that will be available to 
any proposed method to maintain the controller’s ability to adapt in line with the 
system.  
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4.3.3. Adaptive Model-based Control vs Adaptive Control 
To provide control for a system, knowledge of the system must be contained in the 
controller that either matches or mirrors the system. One approach to controlling a 
system is for the adaptive controller to model the system in a form that the controller 
can extract information from or use more readily to draw conclusions. These 
conclusions could predict results for a series of actions the controller may perform 
with an expected reward or performance benefit. This type of behaviour allows a 
controller to test or hypothesise about its choice of actions and solve the optimisation 
problem with knowledge of the system. An alternative is to use a simpler, ‘solvable’ 
model of the system, ie, if the system is non-linear, the model may be linear. This 
simplification allows for control strategies to be produced for a linear view of the 
system. This approach is appropriate if the model can be updated often enough such 
that the current linear approximation matches the current mode of the non-linear 
system. 

Adaptive control without a model directly adapts the controller. Previously in 
Section 3 it was stated that optimisation algorithms solved problems more effectively 
when their structures were aligned. The effective adaptation of the controller must 
therefore be the process of aligning the controller’s structure to the system. This 
alignment is the same as encoding knowledge of the system into the controller, but in 
a ‘solved’ format. This second method must therefore combine a method for adapting 
and a method for solving that is separated in the model-based approaches. 

4.3.4. Iterative Learning Control 
Iterative learning control [48], unlike other control strategies presented in this report, 
is designed specifically for repetitive tasks. The process of adaptive control or 
controller optimisation is triggered after each iteration of the repetitive task.  

This type of control scheme may only be useful if certain tasks can be identified as 
repetitive and can be triggered from the network. This could allow layers of 
controllers where an iterative learning controller would control sub-tasks that could be 
triggered by a more ‘senior’ controller.  

4.3.5. Genetic Programming 
Genetic programming [49] is a very similar paradigm to genetic algorithms. The 
difference lies in the building blocks that the genome controls. A genetic algorithm’s 
genome is the parameters that are directly fed into a system; a genetic programming’s 
genome contains the functions that control the system. For genetic programming this 
allows the designer to place problem specific knowledge into these initial functions. 
This should simplify the problem that the genetically inspired algorithm must solve, 
whilst at the same time providing assumptions and constraints as to how to solve a 
problem where innovative and more efficient methods may exist, but are hard to 
construct from the set of functions that was used to initialise the algorithm. 

4.3.6. Artificial Neural Networks 
The area of artificial neural networks [50, 51] (ANNs) has been developed from 
biologically inspired models of connected neurons. Their use within Project Monotas 
could be as controllers that are optimised either before deployment, and/or whilst 
deployed. An ANN consists of a network of simple processing units that take a set of 
inputs, combine them in a simple manner, condition the result and then output the 



020.PUB  

Page 31 of 39 

result. The output can either connect to another neuron or be a controller output used 
for setting the parameters. Example combining functions are a weighted sum or a 
logical AND. The conditioning function can be a simple multiplication of the sum, a 
thresholding operation or a more complex function such as a sigmoid. Differences 
between ANNs with the same number of neurons can be due to different combining 
functions, different conditioning functions or different connections between neurons. 
Variations between ANNs may also be encoded in the parameters that control each of 
these aspects. 

 Inputs 

Output  Conditioning 
Function 

 
COMBINE(Inputs)

 
Figure 15 An example structure of a simple artificial neuron in an artificial neural 
network. 

After defining the internal structure of the neurons used in the ANN, they are 
connected together to form a network. These connections will include connections 
from inputs, eg, network statistics, and connections to outputs, eg, network 
parameters, as well as inter-neuron connections joining neurons together. Further to 
this, ANNs are also divided into two classes dependent upon whether there are cycles 
in the connections of the network. Networks without cycles can be called feed-
forward networks, and those with cycles can be called recurrent networks. Both are 
shown in Figure 16 with the feedforward network in (a) and the recurrent network in 
(b).  There also exist a number of other names for the two different types of ANN as 
researchers from computer science, neurology, psychology and physics have all been 
involved in the field of ANNs. Recurrent networks give the network a form of 
memory, but are harder to train directly. 

(a) (b)  
Figure 16 An example structure of a feedfoward and a recurrent artificial neural 
network in (a) and (b), respectively. 

There are a number of different methods for optimising or training an ANN. 
Optimisation techniques such as genetic algorithms can be used to optimise the 
internal parameters of an ANN, but do not necessarily take advantage of the structure 
of the ANN being optimised. More direct approaches to optimising or training an 
ANN are techniques such as back-propagation. Larger, more highly connected ANNs 
can be more difficult to train because the parameters are coupled. The structure of an 
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ANN is also a consideration since it is often predefined before the ‘learning’ process 
begins. Trade offs exist when deciding the number and structure of the neurons in an 
ANN. With too many neurons, the network will be more difficult to train, with too 
few the network won’t be able to meet the challenge. This trade off is considered in 
the technique presented in Section 4.3.10, which considers varying the structure of the 
ANN by adding new neurons and connections as well as managing the evolution of 
each neuron’s internal parameters. 

4.3.7. Markovian Decision Processing 
Modelling a system as a Markov decision process [52] (MDP) allows predictions to 
be made as to the optimal action for the current state. MDPs are processes whose 
current best action is only influenced by the current state. Not all past state transitions 
influence the decisions of the current state. To optimise for a modelled MDP-like 
system, each set of available actions will carry a reward associated with choosing it. If 
the optimisation process is just considering the best current action to take, then the 
model can simply be used to look up the current best action. After each action, the 
reward can be updated with the results from repeating that action. It is also possible to 
use the MDP to select the best action if the rewards from the next N states are 
considered. To calculate the reward for taking action A and the best following action 
we can use the following equation, 

 ∑+= max|12 nAnAA RpRR α  (3) 

where 
1AR is the reward for taking action A in the current state and 

2AR is the reward if 
the following state is considered. Anp | is the probability of arriving in the nth state 
given action A is taken in the current state. maxnR is the best reward that is available in 
state n. α  is used to weight the future rewards. This equation can then be used to 
calculate the reward for each action in the current state with a ‘horizon’ of 1, ie, the 
process is looking into the future 1 step. This will allow an action that performs badly 
to be taken if it is likely to make the system enter states with highly rewarding 
actions. This process of looking ahead can be repeated to consider the best current 
action if two future actions can be considered. The reward from each future action can 
be summed evenly ( 1=α ), or future rewards can be reduced depending on how far 
ahead they are ( 1<α ). This allows earlier rewards to be favoured. The number of 
iterations of looking ahead, or the ‘horizon’, can be set to different lengths. That is, in 
the example the horizon was just one, but it could be extended further by iteration. 
This becomes exponentially more expensive as the horizon is extended. One of the 
key aspects to this approach is that to be able to control such a process it is important 
that the current state of the system is fully observable. MDPs are also closely 
associated with stochastic learning automata [53] that are able to control MDPs.  

4.3.8. Training and ‘Learning’ methods  
4.3.8.1.Reinforcement Learning 
Reinforcement learning is a concept associated with adapting a controller, such as a 
neural network, to perform a task via the use of rewards and punishments. It does not 
specify how the controller that is being adapted must perform the task, but purely 
provides feedback on how well the controller is performing. The feedback in 
performance for a system can be instantaneous, but it can also be delayed. This can 
cause a problem when attempting to evaluate the actions a controller is taking. This 
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builds upon the ideas of Markov decision processes, where each state of the system 
under control is observable and then a choice in actions is possible. These actions will 
then generate some form of reward or punishment. Transitions from state to state of 
the system typically are probabilistically defined, implying that an action in one state 
will not control the next state of the system. The rewards generated may also not 
necessarily be constant for a single action in the same state. 

There are two general approaches to applying this concept to adapting systems. The 
simplest is to use an optimisation algorithm to search for an optimal set of parameters 
that can be applied to the controller. Alternative methods also exist specifically for 
ANNs, namely, back-propagation and Q-learning. Both enable a neural network to 
converge on an optimum in a timescale that is dependent on the complexity of the 
network. 

This process of reinforcement will fail if the performance characteristics are not well 
represented in the reinforcement measure. For example, if during training an element 
such as coverage is not included, or not weighted highly enough in the calculation of 
fitness, then the system will reduce coverage to maintain other ‘more important’ 
elements. Care must therefore be taken in formulating the reinforcement function.  

Reinforcement learning has been used in elevator control [54]. This application has 
interest because the elevators were each controlled by a separate ANN controller 
without direct communication. The controllers were then all subject to the same 
reinforcement-learning signal generated from the performance of all the ANNs as a 
group. This signal was ‘noisy’ due to the interactions between the different controllers 
as they all changed at the same time. This meant that elevator controllers with 
different properties could be developed to serve the different requirements or 
behaviours of the overall system. The training of the elevators used probabilistic 
models of passenger requests and destinations that may have parallels to the problem 
of call admission in mobile networks, especially if probabilistic models of user call 
behaviour are also available. 

4.3.8.2.Supervised Learning 
Supervised learning [55, 56] supplies the adaptive controller with a set of example 
inputs and outputs that should be representative of the task the controller is required to 
perform. The adaptive controller is then altered via some scheme to produce the 
desired outputs given the test inputs. It is then hoped that the controller will have 
‘learnt’ how to control the system in a general manner. Problems arise in using this 
type of learning if the training data is not sufficiently broad to cover the functionality 
of the system requiring control. Other difficulties may be in defining the desired 
response to a complex system given a known output of the system. Thus the 
generation of data to train the controller can be a difficult task.  

4.3.8.3.Unsupervised Learning 
Unsupervised learning [55, 56] is used to detect patterns in data, and is not 
immediately suitable for training an adaptive controller. Unlike a supervised learning 
system, an unsupervised learning system is only given input data without any labels 
describing what the data represents, or if their immediate response is ‘right’. The 
unsupervised system’s aim is to label the data according to structures found within the 
data itself. This process could evaluate a set of data with each sample of an N-
dimensional size to be generated from m different independent variables. This allows 
for the data to be simplified to m dimensions, which could allow for easier 
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interpretation by a user and simpler computation by any following process. 
References for using unsupervised learning to present to users are found in [57, 58] or 
for input into automation schemes in [59]. Within Project Monotas, unsupervised 
learning could be useful to analyse user behaviour, or to separate out different 
conditions experienced by network elements. This could provide further insight into 
user and network behaviour that may not ordinarily be found. It may also highlight 
interdependencies within the network’s statistics. 

4.3.9. Neural Swarming  
Neural swarming [60] is a combination of ideas present in non-adaptive control and 
neural networks. The starting point for applying neural swarming to a problem is a 
neural network trained to perform the task of a PID controller. This PID controller 
should be chosen such that it can effectively control the current state of the system. 
This ANN, trained as a PID controller, is then duplicated with each internal parameter 
of the neurons being varied by a small percentage. This produces ANNs that model 
behaviour close to the original PID controller. The different ANNs are then placed in 
control of the system for short amounts of time, after which their performance is 
‘rated’. In between each neural network taking control of the system its parameters 
are updated. An example scheme for updating the parameters is described in the 
following equation, 
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where Wn represents the current values for the ANN, Vn represents the current rate of 
change of those values, nominally called the velocity of the swarm member, α and β 
are constants that control the rate of change within the system and rand is a random 
number between 0 and 1. The variables Wnb and Wsb represent the neural network 
parameter values that produced the best rating for this swarm member and the current 
best ever values from all swarm members, respectively. Updating the swarm 
member’s parameters using the overall swarm’s best values should keep each member 
centred about the current optimal values. The use of the velocity should also allow the 
swarm members to investigate different settings around this optimum. This process of 
continually exploring controller settings around the current optimum allows the PID 
controller to change its approximation to the system as the system changes. 

Using a population of ANN models of different PID controllers can allow a complex 
non-linear system function to be controlled with linear controllers. The example in 
Figure 17 shows a more complex system function, which at different points of its 
operation can be controlled by the three different controllers PID1, PID2, and PID3. 
The neural swarm technique allows different controllers to be tested around the 
current optimal controller. For example, if the system were to be operating such that 
the controller represented by PID2 was the optimal controller, when controllers PID1 
and PID3 are tested on the system they would receive lower ratings from the system. 
If, however the mode of the system changed then one of the non-optimal controllers 
may become the optimal controller, and the internal settings of each of the swarm 
members would move towards this new optimum. Due to the method of updating the 
member’s internal variables the members do not converge, but swarm around the 
optimum. This may allow for slightly less than optimal behaviour, but allows the 
controllers to adapt and centre themselves as a swarm around the system’s current 
optimal value. 
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Complex System 
function 

PID1 

PID2 

PID3 

Approximations of 
the System function

 
Figure 17 Using 3 different control strategies PID1, PID2, and PID3 at different 
times will allow simpler systems to be used to approximate the more complex 
system function. 

4.3.10. NeuroEvolution of Augmenting Topologies 
NeuroEvolution of Augmenting Topologies [61] (NEAT) is similar to the developing 
neural networks in neural swarming. Both maintain a population of neural networks 
whose weights are changed to manage a scheme of iterative improvements and also a 
form of adaptation in line with changes in the system they are controlling. The 
difference between the two ideas lies in the ability for the NEAT method to add to the 
neural network’s topology, ie, to add complexity via new connections and new 
neurons. The initial size of a neural network deployed within the NEAT scheme is 
small, allowing for the network to be adapted to the system more rapidly. This 
adaptation is managed by the use of a genetic algorithm that represents the 
connections between the different neurons in its genome. The different members of 
the population are then placed in control of the system for a short time and then rated. 
Replacement members are then generated from fitter members of the population.  
Members are then discarded if their overall fitness is the lowest. This fitness rating is 
balanced with the number of neural networks NEAT has created with similar 
structure. ANNs with newly added links between neurons, or new neurons are 
temporarily prevented from being discarded. This allows the new structure to mature 
before it is allowed to be removed from the population. 
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5. Summary and Conclusions 
This report has considered a wide range of methods that have been developed in order 
that computers can be used to solve difficult problems. The techniques have been 
grouped into the areas of network optimisation strategies, optimisation techniques and 
control theory. Network optimisation strategies presented in Section 2 suggested five 
approaches that could be useful for optimisation of networks within Project Monotas. 
Section 3 reviewed optimisation techniques that can be applied to difficult problems. 
This firstly considered frameworks to simplify the system being optimised, and then 
presented different techniques that can be used to find optimal settings for a system. 
In Section 4 the use of control theory techniques to directly influence the network 
were considered. These techniques should enable faster response times to changes in 
the system or mobile network, which would hopefully provide a greater level of 
performance than more static settings. This differs from optimisation by trying to 
define the rules or behaviours that should be used to respond to a system, rather than 
trying to define the system’s inputs given the system’s outputs. These rules form 
closed-loop control over a system and can be adapted or remain fixed.  

The application of each of these techniques to problems encountered in Project 
Monotas is likely to be somewhat experimental. The beginning of Section 3 
highlighted the difficulty in finding a good optimisation technique for any given 
problem, and considered it to be a ‘hit and miss’ process. There are also concerns 
about the number of iterations each algorithm may take when finding good settings 
for the network, especially if the optimisation process is required to update the 
network’s parameters in a fixed time step. Selecting a good adaptive control scheme is 
also subject to the same ‘hit and miss’ process, where it is unknown whether a 
controller may adapt well or not given a particular system to control. Other difficulties 
with adaptive and non-adaptive types of control are associated with defining the 
models of the system the controller is meant to control. These models, used by some 
control theories, enable controllers to predict the stability of the overall system, which 
in turn constrains and defines their own outputs. Inaccuracies in the estimation of a 
system model, which to a certain extent may be countered by robust methods, could 
cause the resulting controllers to behave in an unstable manner.  

Finally, whether an optimisation scheme or a real-time controller of some description 
is selected for solving problems within Project Monotas, some aspect of configuration 
of the network will be ceded to an automatic process. To prevent failure, these 
automations will need limits placed upon them, whose appropriate settings will also 
need to be decided. It will also be important that the performance criteria of the 
schemes be set so that they may be evaluated. It is unlikely that any scheme selected 
from this report will produce perfect performance. Therefore, understanding the 
failure modes, the variations in performance and the possible gains will enable the 
process of adopting a chosen scheme to be monitored. The potential benefits to 
computing ‘optimal’ or better settings for the network could be significant, and will 
hopefully allow an improvement to network conditions that could not normally be 
achieved. The use of real-time controllers within the network environment also allows 
optimisations that could not currently be performed by an engineer, and may help the 
network to tailor itself to the immediate demands imposed upon it. 
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